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We are in the era of big data
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● Lots of data is being collected

○ Web data, e-commerce

○ Bank/Credit Card transactions

○ Social Network

○ Scientific data



Four V’s of big data
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Big data systems are ubiquitous
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Big Data Systems

Social networkIT log analysis

HealthcareFraud detection

Social CommerceBanking

business

E-commerceData warehouse



Magic mirror in my hand, which is 

the best in the land?
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Big data benchmarks make it easy

● A suite of programs that make competing 

products comparable​, help practitioners 

choose the right big data systems

● Identify the performance bottlenecks to 

make big data systems better

● One size doesn’t fit all, i.e., we need 

specific benchmarks for various cases
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Timeline of database benchmarks
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Key elements of benchmarks

● Domain with data schema

● Synthetic data generators

● Specified workloads, e.g., queries

● Performance metrics, e.g., latency

● Execution rules, e.g., power/throughput test 
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Taxonomy of big data benchmarks
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System domain System examples Benchmarks

Map-Reduce based Hadoop, Spark, Flink AMP Benchmark and  

HiBench

NoSQL based MongoDB, Cassandra, 

Redis

YCSB

SQL based Hive, Teradata, Presto, 

Spark SQL

TPC-H, TPC-DS, 

BigBench

Graph based Neo4j, JanusGraph, 

Giraph

LDBC Graphalytics, 

SNB

Multi-model based ArangoDB, OrientDB, 

AgensGraph

TPC-DI, PolyBench, 

UniBench

Others Streaming, Spatial, RDF, or Micro-benchmarks



Main topics of this tutorial
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At the end of this talk 
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● The key techniques of various big data 

benchmarks

● The relationship of big data benchmarks 

and their applications

● Current practices and Future directions

You are expected to acquire the following knowledge:
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Benchmarking SQL Analytical Systems

● TPC to the rescue (http://www.tpc.org/)

● Complex business analysis applications 

with structured data

● We look at three representatives:        

TPC-H, TPC-DS, TPCx-BB 
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http://www.tpc.org/


TPC-H -- an overview

● Based on a business 

analysis application 

with 8 tables, e.g., 

customers and orders

● Data generation with 

scale factor, e.g., 1

● 22 business queries 

with choke-point design
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Figure from Markus et al. Quantifying TPC-H Choke Points 

and Their Optimizations, PVLDB 2020.



TPC-H 22 queries
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● 28 choke points

● 6 categories
○ aggregation

○ join

○ data access locality

○ expression calculation

○ correlated subqueries

○ parallelism&concurrency

Figure from Peter Boncz et al. TPC-H Analyzed: Hidden Messages and 

Lessons Learned from an Influential Benchmark. TPCTC 2013.



TPC-H -- metrics

● Composite Query-Per-Hour Performance Metric

● Price/Performance Metric 

● Availability Date

● Energy Metric  Watts/KQphH@Size
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From TPC-H to TPC-DS, Why?

● Linear scaling of tables

● Homogeneous data distribution

● Third Normal Form (3NF), rather than Star Schema

● Simple-structured ad-hoc queries, update workloads are simple
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Figure from https://medium.com/hyrise/a-summary-of-tpc-ds-9fb5e7339a35 

https://medium.com/hyrise/a-summary-of-tpc-ds-9fb5e7339a35


TPC-DS: A Decision Support Benchmark

● V1 during 2000-2012, introduce V2 in 2015 to 

support Hive/Hadoop

● Snowflake schema with 24 tables including 7 fact 

tables, e.g., sales, and 17 dimension tables

● More realistic data scaling with non-uniform

distribution  

● 99 query templates with 4 types, i.e., reporting, 

ad-hoc, iterative, and data mining 
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TPC-DS: Execution rules and Metrics
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● Execution Rule:

● Query-Per-Hour Performance Metric:



When SQL meets Hadoop
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Evaluation by Yueguo Chen et.al at BPOE, 2014



From TPC-DS to TPCx-BB

● An end-to-end application-level benchmark 

for Big Data Analytical Systems at 2016

● Based on TPC-DS, and Originate from the

proposal of BigBench V1 at SIGMOD 2013

● With volume, variety and velocity.
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The Volume of TPCx-BB

● Similar scale factors to TPC-DS, new data:
○ buyer clicks

○ visitor clicks

○ reviews:

● PDGF for parallel data generation
○ proposed by Tilmann Rabl et al, TPCTC 2010

○ scalable and extensible data generator

○ random seeding strategy
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The Variety of TPCx-BB 

● Data Model
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Figure from TPCx-BB documentation v1.4.0.



The Velocity of TPCx-BB

● A periodic data refresh process considering 

(i) the amount of data;(2) the time interval.

● Refresh velocities for each of data types

Vstructured = 1, Vunstructured = 2, Vsemistructured = 4
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Figure from BigBench paper at Sigmod 2013



TPCx-BB workloads

● 30 complex Queries, 10 of 

which are based on the TPC-

DS

● 5 business categories from 

Mckinsey’s reports. 

● 4 technique dimensions 

implemented by Hive Queries 

with MapReduce, NLP, and 

MLlib programs

● Metric: 
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Tables from BigBench paper at Sigmod 2013



An example of TPCx-BB workload

Q10: For all products, extract sentences from its product reviews that 

contain positive or negative sentiment and display for each item the 

sentiment polarity of the extracted sentences (POS OR NEG) and the 

sentence and word in sentence leading to this classification.
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Most recent results of TPCx-BB 
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Link：http://tpc.org/tpcx-bb/results/tpcxbb_last_ten_results5.asp

http://tpc.org/tpcx-bb/results/tpcxbb_last_ten_results5.asp
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Map-Reduce Paradigm
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● Proposed by Google at OSDI 2004



Benchmarking Map-Reduce BDS

● Representative Open-source Systems: 

Hadoop, Tez, Hive, Spark, etc.

● We will look at two benchmarks: 

AMP big data benchmark and HiBench

● We will discuss the main findings from their 

existing evaluation 
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AMP Big Data Benchmark

● Originate from the paper "A Comparison of 

Approaches to Large-Scale Data Analysis" 

by Pavlo et al. SIGMOD 2009

● Three datasets: (1) a set of unstructured 

HTML documents; two SQL tables, (2) 

Rankings with pagerank and (3) UserVisits.

● Four queries for selection, join, aggregation, 

and UDF tasks, respectively
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https://amplab.cs.berkeley.edu/benchmark/#

http://database.cs.brown.edu/sigmod09/benchmarks-sigmod09.pdf
https://amplab.cs.berkeley.edu/benchmark/


When MR meets Parallel DBMSs
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Evaluation by Andrew Pavlo et.al at SIGMOD, 2009  

Figure from Michael Stonebraker et.al from ACM communication, 2010

http://database.cs.brown.edu/sigmod09/benchmarks-sigmod09.pdf


When MR meets Parallel DBMSs
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Insights form Michael Stonebraker et.al from ACM communication, 2010

1. MR processing model is slower because of (1) repetitive record 

parsing;(2) write the intermediate results (3) block-based scheduling

2. Parallel DBMSs need one-button installs, automatic tuning, better 

documentation. 

3. Parallel DBMSs excel at efficient querying of large data sets; MR-

style systems excel at complex analytics and ETL tasks.

1. The best solution is to combine Parallel DBMSs with MR framework 

e.g., HadoopDB, Hive, Aster, Greenplum, Cloudera, and Vertica



HiBench

● A big data benchmark suite with four 

categories

● HiBench 7.1 with a streaming workload 

and a parallel graph algorithm
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Figure from HiBench paper from ICDE 2010



When MapReduce meets Spark

1. Spark is about 2.5x, 5x, and 5x faster than MapReduce, for 

WordCount, K-means, and PageRank, respectively. 

1. MapReduce is 2x faster than Spark in Sort workload.
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Evaluation by Juwei Shi et.al at VLDB 2015  



Other Big Data Benchmark Solutions

● Yahoo! Cloud Serving Benchmark (YCSB)

● Yahoo Streaming Benchmark

● BigDataBench

● ...
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Benchmarking NoSQL BDS: YCSB

● Yahoo! Cloud Serving Benchmark 

● Aim for Cloud-based OLTP

● Metrics: Throughput, scalability, elasticity

● Extensions include YCSB++, YCSB+T, etc. 
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Figure from YCSB paper from Socc 2010



Yahoo Streaming Benchmark
https://github.com/yahoo/streaming-benchmarks

● Simulate a simple advertisement application
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Figure from 

https://developer.yahoo.com/blogs/135370591481/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlL

mNvbS8&guce_referrer_sig=AQAAADn8heo1tz6UYHLnFbHQoa_bxkN_ouhjHJLNSj1XPv2_zwJTsFg6qvPJkD-

nz75FhWkZ7JYO3WUvltEMa_rLVPHCyBFb3AzniLFLHJmNoegeeG6aWhiMYuwINEizGtr61AjtTgfNgvVfmfzMn-

a9Rsp7-W_HBX-Lx3gyFAZ36Uqp

https://github.com/yahoo/streaming-benchmarks
https://developer.yahoo.com/blogs/135370591481/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAADn8heo1tz6UYHLnFbHQoa_bxkN_ouhjHJLNSj1XPv2_zwJTsFg6qvPJkD-nz75FhWkZ7JYO3WUvltEMa_rLVPHCyBFb3AzniLFLHJmNoegeeG6aWhiMYuwINEizGtr61AjtTgfNgvVfmfzMn-a9Rsp7-W_HBX-Lx3gyFAZ36Uqp


Big Data Benchmark: BigDataBench

● by Jianfeng Zhan et al, Chinese 

Academy Sciences

● International Open Benchmark 

Council (BenchCouncil)

● AIBench with 17 AI-based tasks 

https://www.benchcouncil.org/A

IBench/index.html
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Figure from https://www.benchcouncil.org/BigDataBench/index.html

https://www.benchcouncil.org/AIBench/index.html
https://www.benchcouncil.org/BigDataBench/index.html
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Graph databases vs. Graph processing systems
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Figure from Graph Databases Evaluation – Matteo Lissandrini 



● Linked Data Benchmark Council (LDBC)

● LDBC Social Network Benchmark 

● LDBC Graphalytics Benchmark

● LDBC Semantic Publishing Benchmark

● Link: 
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http://ldbcouncil.org/benchmarks

http://ldbcouncil.org/benchmarks


LDBC Social Network Benchmark
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● A data model of social network with 14 entities, 

e.g., persons, and 20 relations, e.g., knows

● A synthetic data generator with scale factors

● Interactive workloads with 14 complex queries, 7 

short read operations and 6 update operations

● Business workloads with 25 complex queries 

● Choke point designs with 8 categories



LDBC Data Generation
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● Value correlation with power-law distribution

● Implementation based on Hadoop

Figures from LDBC paper at SIGMOD 2015



LDBC Choke Point Designs

10/21/2020 Page 47

Inspired by the TPC-H choke point designs

1. Aggregation Performance

2. Join Performance

3. Data Access Locality

4. Expression Calculation

5. Correlated Sub-queries

6. Parallelism and Concurrency



LDBC Choke Point Designs (con’t)
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Figure from LDBC SNB Specification v0.3.2



LDBC Parameter Curation
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Q2: Given a start Person, find the top 20 Forums the 

friends and friends of friends of that Person joined 

after a given Date.

Figure from LDBC paper at SIGMOD 2015



LDBC Parameter Curation (con’t)
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● Problem: select a subset S of size k in the PC 

table such that the variance across all columns is 

minimized.

● Solution: A greedy-based method

Figure from LDBC paper at SIGMOD 2015



LDBC Graphalytics

● 6 real datasets and 2 synthetic generators

● 6 implementations, e.g., Giraph, GraphX

● 6 graph algorithms
○ Breadth-first search (BFS)

○ PageRank (PR)

○ Weakly connected components (WCC)

○ Community detection using label 

propagation

○ Local clustering coefficient (LCC)

○ Single-source shortest paths (SSSP)
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LDBC Graphalytics (con’t)

Metrics: processing time, makespan, scalability
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Figures from LDBC paper at PVLDB 2016



Other Big Graph Benchmarks

● LinkedBench and BG for social network

● Graph 500 for graph analytics

● LUBM, BSBM, and SP2Bench for RDF 

● GMARK for graph query generation

● ...
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MMDBMS : one size fits a bunch

55

One size fits a bunchOne size doesn’t fit all



Consider a social commerce scenario

Id:2

56

id:1 Id:3

knows knows

id name credit_limits

1 James 2,000

2 David 3,000

3 Mary 5,000

{"Order_no": "20201212",

“customer_no":1,

“orderlines":[

{"item_no":"cn2523",

"type":“cellphone",

“name”: “ Huawei P40"},

{"item_no":“cn2526“,

"type":“headphone",

"name": “Freebuds 3"}]

}



An example of multi-model query (ArangoDB) 

57

Product recommendation: recommend the bought

cellphones by James to their 2-hop friends whose credit

limit is greater than 3000.

AQL: 
For c in customers For o in orders For f in outbound 2..2 c.id GRAPH Knows

Filter c.name=="James" and f.credit_limits>3000 and o.customer_no==c.id 

and o.orderline[*].type=="cellphone“ and f.id==c.id

Return {friend:f, orders:o}



Benchmarking Multi-Model BDS
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UniBench to the rescue
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Three key components: Data generation, Workload 

generation, and Parameter Curation



Data Schema of UniBench
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Three-phase data generation
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（1）Purchase : interest-oriented transaction

（2）Pro-purchase: friend-influenced transaction

（3）Re-purchase: probabilistic transaction



Realistic correlated distributions
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DATAGEN: scaling with scale factor
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Choke-point designs

❑ Choosing the right join type and order

❑ Performing complex aggregation

❑ Ensuring the consistency and efficiency
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Choke-point design: join ordering
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Choke-point design: aggregation
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Choke-point design: transaction
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New Order: 

(i) create and insert the order

(ii) update the quantity of involved products, 

(iii) insert the invoice. 

Payment. 

(i) retrieve the unpaid order, 

(ii) update the balance of the seller and buyer,

(iii) update the order status to paid, 

(iv) update the related invoice. 



An overview of the Workloads
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UniBench Workload:

4 business 

categories,

10 queries,

2 transactions



Parameter Curation
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Observation: The same queries with different 

parameters differ in sizes of intermediate results.



Parameter Curation (con’d)
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Parameter Curation (con’d)
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Our approach: Latin Hypercube Sampling (LHS) 



DB layer implementations
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UniBench has implemented all the designed 

queries in AQL, Orient SQL and SQL/Cypher



An example of Q5
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An example of Q5: ArangoDB
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An example of Q5: OrientDB
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An example of Q5: AgensGraph

Page 76



An example of Q5: Spark SQL
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UniBench Evaluation

Page 78

❏ For query processing, OrientDB is excel at graph-based queries

❏ ArangoDB is the best at document filtering with joining query

❏ AgensGraph outperforms the others in performing complex aggregation queries

Find out more details from https://link.springer.com/article/10.1007/s10619-019-07279-6

https://link.springer.com/article/10.1007/s10619-019-07279-6


An Demonstration of UniBench

In this part, we demonstrate how to use 

UniBench to benchmark a multi-model 

database, ArangoDB
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UniBench 2.0

● More data models, e.g., RDF

● More cross-model queries 

● Stay tuned on https://github.com/HY-UDBMS/UniBench
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https://github.com/HY-UDBMS/UniBench


Other related benchmarks

• TPC-DI

• PolyBench

• …
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TPC-DI: data integration benchmark

Retail Brokerage Firm
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PolyBench: PolyStore benchmark

Banking business
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Open Challenges 
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Content from https://dbtest.dima.tu-berlin.de/media/DBTEST.io_Presentations/dbtest_raasveldt_18-06.pdf



Open Challenges

Big data benchmarking pitfalls
• Non-reproducibility

• Failure to Optimize

• Apples vs. Oranges

• Incorrect Results

• Cold vs. Hot Runs

• Data Preprocessing/ Job setup

• Overly tuning

10/21/2020 Page 86

Content from https://dbtest.dima.tu-berlin.de/media/DBTEST.io_Presentations/dbtest_raasveldt_18-06.pdf



Future direction No.1

Verifiable/Probablistic big data benchmarking

• Open-Source & Reproducible

• A > B with confidence interval

• Fine-grained Benchmarking
– Example: SQLScalpel. https://dbtest.dima.tu-

berlin.de/media/DBTEST.io_Presentations/dbtest_kersten_18-06.pdf

10/21/2020 Page 87

https://dbtest.dima.tu-berlin.de/media/DBTEST.io_Presentations/dbtest_kersten_18-06.pdf


Future direction No.2

Personalized big data benchmarking
• User-driven requirements and metrics

• Component-based

• Interactive benchmarkling

• Automated reports with insights
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Future direction No.3

Benchmarking results reuse:
• Many useful evaluations

• Collect valid insights

• Build the knowledge for future use

• Trace the system evolution, e.g., TPC-DS -> 

TPC DS V2, Spark 2.0.0 -> Spark 3.0.0 
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Thank you! Any questions? 
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