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New challenges for machine learning

Standard static and relatively small scenarios in machine learning and data
mining do not re�ect the current real-life problems we are facing.

We must deal with new data sources, generating high-speed, massive and
heterogeneous data.

According to IDC Report in 2018 close to 5.8 zetabytes of data was gener-
ated.

We require novel, e�cient and adaptive methods for extracting valuable
information from such sources.
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Modern data �ood
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How many V's in Big Data?

There are many V's being constantly added: value, variability and visualiza-
tion.
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What is a data stream?

Data stream: an ordered, potentially unbounded sequence of instances which
arrive continuously with time-varying intensity.

Velocity refers to the speed at which the data is generated and input into
the analyzing system.

Data streams are also often connected with Volume, forcing us to cope with
massive and dynamic problems.

High-speed data streams: arising demands for fast-changing and continu-
ously arriving data to be analyzed in real time.
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Requirements for data stream algorithms

Incremental processing

Limited time:

Examples arrive rapidly

Each example can be processed only once

Limited memory:

Streams are often too large to be processed as a whole

Changes in data characteristics:

Data streams can evolve over time
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Evaluating data stream algorithms

Block / batch processing (data chunks)

Online processing (instance after instance)
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Evaluating data stream algorithms

Standard metrics like accuracy, G-mean, Kappa etc. were designed for static
problems.

One should use prequential metrics with forgetting, computed over most
recent examples.

Prequential accuracy for standard problems and prequential AUC for binary
and imbalanced streams.

Additional metrics are crucial for evaluating streaming classi�ers:

Memory consumption

Update time

Classi�cation time
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Concept drift

Concept drift can be de�ned as changes in distributions and de�nitions of
learned concepts over time.

Some real-life examples:

changes of the user's interest in following news

evolution of language used in text messages

degradation or damage in networks of sensors
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Concept drift

Let us assume that our stream consist of a set of states S = {S1, S2, · · · , Sn}, where Si
is generated by a stationary distribution Di .

By a stationary stream we can consider a transition Sj → Sj+1, where Dj = Dj+1.

A non-stationary stream may have one or
more of the following concept drift types:

Sudden, where Sj is suddenly
replaced by Sj+1 and Dj 6= Dj+1

Gradual, considered
as a transition phase where
examples in Sj+1 are generated
by a mixture of Dj and Dj+1

Incremental, where rate of changes
is much slower and Dj∩ Dj+1 6= /0

Reocurring, where a concept
from k-th previous iteration
may reappear: Dj+1 = Dj−k

One must not confuse concept drift with data noise.
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Concept drift

We may also categorize concept drift according to its in�uence on the prob-
abilistic characteristics of the classi�cation task:

Virtual concept drift - changes do not impact the decision boundaries
(posterior probabilities), but a�ect the conditional probability density
functions

Real concept drift - changes a�ect the decision boundaries (posterior
probabilities) and may impact unconditional probability density
function
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Handling concept drift

Three possible approaches to tackling drifting data streams:

Rebuilding a classi�cation model whenever new data becomes
available ( expensive, time-consuming, even impossible for rapidly
evolving streams!)

Detecting concept changes in new data (and rebuilding a classi�er if
these changes are su�ciently signi�cant)

Using an adaptive classi�er (i.e. working in incremental or online
mode)
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Handling concept drift

Algorithms for e�cient handling of concept drift presence can be categorized
into four groups:

Concept drift detectors

Sliding window solutions

Online learners

Ensemble learners
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Drift detectors

Algorithms that address the question of when drift oc-
curs, being usually a separate tool from the actual clas-
si�er.

They aim at rising a signal when the change occurs.
Some models also raise alarm when the chance of drift
increases.

Three drift detector groups:

Supervised.
Use classi�cation error or class
distribution to detect changes - very expensive

Semi-supervised.
Use reduced number of important objects for
detection - takes into account the cost of labeling

Unsupervised.
Based solely on properties
of data - useful for detecting virtual drift, as
real drift requires at least partial access to labels
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Limited access to true class labels

Most of the works done in data streams assume that true class labels are available for
each example or batch of objects immediately after processing.

This would however require extremely high labeling costs - which is far from being a
realistic assumption.

We should assume either that we deal with labeling delay or we have a limited labeling
budget.

Active learning allows us to select samples to be labeled according to their value to drift
detector and / or learner.

Active learning is especially challenging in the presence of concept drift, in order to rapidly
adapt to changes.
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Novelty detection

Novelty detection plays a crucial role in mining data streams.

First applications: novelty as rare, atypical objects.

Novelty detection used for detecting concept drift. Frequent novel data = drift occurred.

Current trends: novelty detection = evolving class structure. Initial set of classes in not
the de�nite one and new classes may appear with the progress of stream:

PSj
(y =Mi ) = 0 and PSj+1

(y =Mi )> 0. (1)

Previously known classes may start to appear less frequently and �nally stop appearing at
all.

PSj
(y =Mi )> PSj+1

(y =Mi ). (2)
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Learning from imbalanced data streams

The issue of class imbalance is becomes much more di�cult in non-stationary
streaming scenarios 1 2:

Imbalance ratio, as well as role of classes may evolve

Class separation may change, as well as class structures

We work with limited computational resources under time constraints

Batch cases easier to handle, as one may handle chunks independently

Online cases highly di�cult due necessity of adapting to local changes

1Bartosz Krawczyk: Learning from imbalanced data: open challenges and future
directions. Progress in AI 5(4): 221-232 (2016)

2Alberto Fernandez, Salvador Garcia, Mikel Galar, Ronaldo C. Prati, Bartosz
Krawczyk, Francisco Herrera: Learning from Imbalanced Data Sets. Springer 2018
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Ending notes

Thank you for your attention! Q & A time!

Next: Part 2: Learning algorithms for data streams
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Three main families of classi�ers for data streams

All classi�ers for data stream mining can be categorized into three groups:

Sliding window solutions

Online learners

Ensemble learners
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Sliding window

Assumption: recently arrived data are the most relevant - contain
characteristics of the current context. However, their relevance diminishes
with the passage of time.

There are two most popular strategies employed:

Instance selection with a sliding window that cut o�s older examples

Instance weighting that assigns relevance level to each example
present in the window

Size of the window has crucial impact. Shorter window - focus on the
current concept, prone to local over�tting. Wider window- global outlook
on the stream, may consist of instances from mixed concepts.

There is a number of proposals on applying windows with dynamic size or
multiple windows at the same time.
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Online learners

Online learners for data streams must ful�ll the following requirements:

Each object must be processed only once in the course of training

The system should consume only limited memory and processing time

The training process can be paused at any time, and its accuracy
should not be lower than that of a classi�er trained on batch data
collected up to the given time

Some of standard classi�ers like Naïve Bayes or Neural Networks can work
in online mode.

More sophisticated: Concept-adapting Very Fast Decision Trees, online
Support Vector Machines, Mondrian Forests or weighted learners.
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Advantages of ensembles

Ensemble learning is a well-established area in static ma-
chine learning due to the following reasons:

Classi�ers combination can
improve the performance of the best individual
ones and it can exploit unique classi�er strengths

Avoiding the selection of the worst classi�er

Usually
they o�er more �exible decision boundary and at
the same time they do not su�er from over�tting

Can be simply and
e�ciently applied to distributed environments
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Advantages of ensembles for stream mining

Ensemble learning can be seen as a natural choice for mining non-stationary
data streams1:

It can use the changing concept as a way to maintain diversity

It has �exibility to incorporate new data:

Adding new components
Updating existing components

It o�ers natural forgetting mechanism via ensemble pruning

It reduces the variance of base classi�ers, thus increasing the stability

It allows to model changes in data as weighted aggregation of base
classi�ers

1B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, M. Wozniak: Ensemble learning
for data stream analysis: A survey. Information Fusion 37: 132-156 (2017)
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Ensembles for stream mining - taxonomy

Ensembles according to processing modes:

Block ensembles

Online ensembles

Ensembles according to their method for adapting to drifting streams:

Dynamic combiners: base classi�ers learned in advance, combination
rule adapts to changes

Ensemble updating: all / some base classi�ers updated with incoming
examples

Dynamic ensemble line-up: new classi�ers added for incoming data,
weakest ones removed from the committee
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Dynamic combiners

Based on assumption that concept drift can be modeled as varying classi�er
combination scheme, e.g., with weights assigned to each classi�er.

In order to work we require an e�cient pool of initial classi�ers with high
diversity to capture di�erent properties of the analyzed stream.

Classi�er combination block is subject to identical limitations as standard
classi�ers in regard to time and memory consumption.

Untrained combiners - less accurate, low computational complexity, fast
adaptation.

Trained combiners - more accurate, increased complexity, require additional
data for training (big limitation for streams).
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Ensemble updating

This approach assumes that our ensemble consist of classi�ers that can be
updated in batch or online modes.

At the beginning we train a set of classi�ers that will be continually adapted
to the current state of the data stream.

This requires a diversity assurance method, usually realized as initial training
on di�erent examples (online Bagging) or di�erent features (online Random
Subspaces or online Random Forest).

Additional diversity may be assured by using incoming examples to update
only some of the classi�ers in a random or guided manner.
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Dynamic ensemble line-up

This approach assumes that we have a �exible ensemble set-up and add new classi�ers
for each incoming chunk of data.

Generic scheme:

Train single initial classi�er or K initial classi�ers (subject to training data
availability)

For each incoming chunk of data:

Train a new component classi�er
Test other classi�ers against the recent chunk
Assign weight to each classi�er
Select top L classi�ers (remove the weaker classi�ers)
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Dynamic ensemble line-up

Advantages of this approach:

Use static learning algorithms

May have smaller computational costs than on-line ensembles

Allows naturally to employ a weighted combination scheme

Classi�er combination plays a crucial role.

Most approaches use weighted voting, where weights re�ect the usability for the current
state of stream or time spent in the ensemble.

Recent proposals use more sophisticated combination based on continuous outputs (sup-
port functions) for each class.
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Kappa Updated Ensemble

Ensemble classi�cation algorithm for drifting data streams2

Main contributions:

Kappa statistic for selecting and weighting base classi�ers

Robustness to drifting imbalance ratio distributions

Hybrid architecture updates base classi�ers in an online manner while
changes ensemble setup in block-based mode

Diversi�cation online bagging with random feature subspaces

Abstaining mechanism reduces impact of non-competent classi�ers

2A. Cano, B. Krawczyk: Kappa Updated Ensemble for Drifting Data Stream Mining.
Machine Learning, In Press (2019)
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Kappa Updated Ensemble

Standard data streams
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Kappa Updated Ensemble
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Kappa Updated Ensemble

Imbalanced data streams
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Kappa Updated Ensemble
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Kappa Updated Ensemble
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Kappa Updated Ensemble

Contribution by individualized KUE mechanisms
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Kappa Updated Ensemble

Random feature subspaces vs �xed size feature subspace
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Ending notes

Thank you for your attention! Q & A time!

Next: Part 3: Limited access to ground truth in data streams

Bartosz Krawczyk, Alberto Cano Part 2: Learning algorithms for data streams 24 / 24



Big Data Stream Mining

Part 3: Limited access to ground truth in data streams

Bartosz Krawczyk1 Alberto Cano1

1Department of Computer Science
Virginia Commonwealth University

Richmond, VA
USA

{bkrawczyk,acano}@vcu.edu

Bartosz Krawczyk, Alberto Cano Part 3: Limited access to ground truth 1 / 28



Outline

1 Sparsity of ground truth in data streams

2 Active learning with ensembles

3 Multi-armed Bandit strategy

4 Practical considerations

5 Combining active and semi-supervised learning for drifting data streams

Bartosz Krawczyk, Alberto Cano Part 3: Limited access to ground truth 2 / 28



Outline

1 Sparsity of ground truth in data streams

2 Active learning with ensembles

3 Multi-armed Bandit strategy

4 Practical considerations

5 Combining active and semi-supervised learning for drifting data streams

Bartosz Krawczyk, Alberto Cano Part 3: Limited access to ground truth 3 / 28



Access to true class labels

Most of the works done in data streams assume that true class labels are available for
each example or batch of objects immediately after processing.

This would however require extremely high labeling costs - which is far from being a
realistic assumption.

We should assume either that we deal with labeling delay or we have a limited labeling
budget.

Active learning allows us to select samples to be labeled according to their value to drift
detector and / or learner.

Access to labels is especially valuable when changes occur and thus active learning should
be conducted in a more guided manner.
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Active learning for drifting data stream

Active learning assume that we have a realistic labeling budget at our disposal (e.g., 1%,
5%, 10% of instances etc.)

Uniform budget usage is not a good decision, as we should conserve it for the change
moment.

Additionally, there are no techniques that allow for saving budget for novel class appear-
ance - yet obtaining labeled instanced from new class is of crucial importance.

Furthermore, in imbalanced data streams we should be interested in getting as much
labeled minority instances as possible - but how to predetermine if new instance is in fact
a minority one?
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Semi-supervised learning for static and streaming data

Semi-supervised learning assume that we have a small initial subset of labeled instances
and large subset of unlabeled ones.

Labeled instances are used to guide the semi-supervised procedure in order to exploit
e�ciently the decision space.

Main characteristics of semi-supervised solutions are:

con�dence measure

addition mechanism

stopping criteria

single or multiple learning models

Main approaches based on self-labeling, graph-based solutions and clustering.
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Semi-supervised learning for static and streaming data

Two types of methods dedicated to semi-supervised learning:

transductive - do not generate a model for unseen data, aims at labeling instances

inductive - train a classi�er using unlabeled instances

Semi-supervised learning algorithms usually try to satisfy one of these three assumptions:

smoothness assumption - if samples are close to each other in high density region,
then they may share the same label

cluster assumption - if samples can be grouped into separated clusters, then points
in the same cluster are likely to be in the same class

manifold assumption - high-dimensionality data can be e�ectively analyzed in lower
dimensions
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Active learning framework

Our active learning is guided by a underlying classi�er that selects most useful instances
for labeling from unlabeled set U :

q = arg max
x∈U

Ψ(h,x). (1)

As we work with data streams, we formulate an incremental update of the underlying
classi�cation hypothesis under selected training algorithm A and i-th iteration:

hi+1 = A
(
{qk ,o(qk)}ik=1

)
, (2)

where

qi = arg max
x∈Ui

Ψ(hi ,x), (3)

Ui+1 = Ui \{qi}. (4)

Thus classi�er in our active learning scenario adapts over time based on previous experi-
ence:

qi = arg max
x∈Ui

Ψi (hi ,x), (5)
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Ensemble active learning

We propose to conduct active learning process using an ensemble of L classi�ers1:

Π = {Ψ1, · · · ,ΨL}, (6)

This allows for a more robust instance selection for label query.

Instead of pooling their decision using voting strategies (like in Query by Committee), we
propose to select a classi�er responsible for a given instance query.

This allows to better utilize a pool of diverse classi�ers and select one that can anticipate
the direction of changes better than remaining ones.

The idea behind this is similar to dynamic classi�er selection - exploiting individual clas-
si�er's competencies.

1Bartosz Krawczyk, Alberto Cano: Adaptive Ensemble Active Learning for Drifting
Data Stream Mining. IJCAI 2019: 2763-2771
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Multi-armed Bandit approach

We realize the continuous classi�er selection for active learning via Multi-armed Bandit
optimization.

Each classi�er is treated as an individual machine that is being played to maximize a
cumulative reward.

This is formulated as a regret function - di�erence between reward obtained using a
selected strategy and a reward obtained using a hypothethical optimal strategy:

min
s

Rs =
T

∑
k=1

roptk −
T

∑
k=1

r sk ⇐⇒ max
s

T

∑
k=1

r sk , (7)

Therefore, choosing a proper reward function allows us to track the e�ectiveness of a
classi�er in guiding the active learning process.
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Reward function

Most active learning algorithms are based on classi�er's uncertainty - selecting instances
that are close to current decision boundary.

This is not feasible for drifting data streams, as boundaries change dynamically in the
presence of concept drift - e.g., new concept may appear in the region of high certainty.

We propose to measuring the increase in generalization capabilities of the classi�er ac-
cording to a metric m on a separate validation set V for each selected instance:

rm (hi ,hi−1,V )) = m (hi (V ),o(V ))−m (hi−1(V ),o(V )) . (8)

This allows us to measure how a given instance will increase the generalization capabilities
of a given classi�er.

Classi�er that displays increased generalization capabilities is more likely to quickly adapt
to concept drift.

Thus, it should be selected by Multi-armed Bandit algorithm to guide the current active
learning query.
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Used optimization strategy

We propose to select classi�ers for guiding the active learning procedure based on their
generalization capabilities.

In order to optimize the classi�er selection in the proposed ensemble active learning ap-
proach, we need an e�cient Multi-armed Bandit strategy.

Recent works point to Upper Con�dence Bound (UCB1) as an e�ective tool for this task.

It approaches the minimal regret bound of Ω(logT ) when the constant variance of each
bandit (in our case classi�er) is assumed:

b = arg max
l∈{1,··· ,L}

(
r̄l +

√
2 logT

|Pl |

)
. (9)
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Used optimization strategy

UCB1 is not suitable for drifting data streams, as one cannot assume an identical variance
of each underlying classi�er.

We propose to use a tuned version of UCB1 that takes into account individual variances
of each bandit (classi�er in our case):

b = arg max
l∈{1,··· ,L}

r̄l +

√√√√ logT

|Pl |
min

(
1

4
, var
k∈Pj

(rk) +

√
2 logT

|Pl |

) . (10)
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Practical considerations

Validation set: used ensemble classi�ers must be capable of evaluating the generalization
metric. In practice, this can be obtained from any streaming ensemble classi�er (out-of-
bag instances or di�erent chunks).

Classi�er outputs: EAL-MAB requires for the base classi�ers in ensemble to return contin-
uous outputs (e.g., support functions) and not discreet labels. In practice, this is realized
by most of online / streaming single classi�ers.

Usage of labeling budget: EAL-MAB runs on each new chunk of data for T iterations to
select instances, one per iteration. Thus, the given budget B for a window size of ω is
equal to the number of iterations that EAL-MAB will perform: T = B×ω.

Usage of metric m: EAL-MAB may use any metric suitable for data streams. We propose
to use prequential accuracy.
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Results according to prequential accuracy

Comparison of EAL-MAB and reference active learning algorithms over di�erent ensemble
architectures and base classi�ers over 84 cases (12 benchmark datasets and 7 di�erent
budgets).

A tie was considered when McNemar's test rejected the signi�cance of di�erence between
tested algorithms.
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Adaptation to concept drift

We measure percentage of drifting instances that were selected for label query by active
learning algorithms.

Instances from the new concept (after drift) should be queried most frequently in order
to maximize the classi�er adaptation.

Dataset R-VAR SAL BIAL EAL-MAB

HYPIF 17.23±5.21 19.54 ±4.12 20.46± 4.51 26.12±3.18
HYPIS 18.65± 4.26 22.54±3.95 21.89±4.26 28.81±3.52
LEDM 32.73±2.19 38.45±3.11 39.99±3.82 43.26±3.18
LEDS 27.41±1.86 29.45±2.11 29.88± 3.28 33.47±1.68
RBFB 21.09±2.76 24.98±2.98 29.72±3.07 26.54±3.01
RBFG 36.44±4.98 38.72±6.11 40.07±5.28 45.28±5.39
RBFGR 38.56±6.21 40.03± 7.01 41.13±6.38 47.20±6.94
SEAG 11.87±3.98 17.43±2.51 18.82±2.99 15.82±2.32
SEAS 10.02±7.32 15.77±6.21 16.61±5.84 25.06±5.11
TRES 38.23±4.98 31.44±2.66 32.80±2.29 43.19±3.36
ACT � � � �
SEN � � � �
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Diversity analysis

We measure diversity of ensembles measured with kappa interrater agreement metric with
respect to varying budget sizes
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Outline

1 Sparsity of ground truth in data streams

2 Active learning with ensembles

3 Multi-armed Bandit strategy

4 Practical considerations

5 Combining active and semi-supervised learning for drifting data streams
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Motivation

Active learning allows for an informative selection of instances that will be most
useful for adjusting the classi�er to the current state of the stream. However, each
such query reduces the available budget.

Self-labeling allows to exploit discovered data structures and improve the
competency of a classi�er at no cost, yet o�ers no quality validation.

These procedures are complimentary - active learning can be interpreted as an
exploration step and semi-supervised learning as an exploitation step.
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Hybrid framework for drifting data stream mining on a

budget

We developed a hybrid framework that uses active learning for creating a
meaningful input for self-labeling strategy2.

Seven strategies for drifting data self-labeling were proposed, divided into two
groups:

blind self-labeling strategies relied on adaptation of uncertainty

threshold in a similar manner to their active learning counterparts.

informed self-labeling strategies utilized input from the drift detector to

adapt their actions depending on the current state of the stream.

2Lukasz Korycki, Bartosz Krawczyk: Combining Active Learning and Self-Labeling for
Data Stream Mining. CORES 2017: 481-490
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Continuous DDM strategy

DDM assumes that changes can be detected by tracking the actual error rate p
along with its standard deviation s and comparing it with the registered error for
the stable period. The algorithm makes decisions based on the condition:

p+ s > pmin + αsmin, (11)

where pmin and smin are the mean error and its standard deviation registered for a
stable concept after at least 30 samples. The α parameter is used to determine
thresholds for warning (α = 2, the con�dence interval is 95%) and change (α = 3,
the con�dence interval is 99%) states

We simply extract the tracked, continuous error measure ε = p+ s.

The threshold should be higher during a concept drift and lower during a stable
period:

p(ŷ |X )≥ tanh2(ε +
1

c
). (12)

We add 1/c to additionally penalize a situation when a classi�er simply guesses
labels for ε = 1−1/c.
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Hybrid self-labeling ensembles

Our hybrid solution can be easily incorporated into an ensemble learning scheme.

For active learning part we incorporate our previously discussed online Query by
Committee solution that uses online Bagging and our classi�er update strategy.

While active learning is based on collective decision of classi�ers, we propose to
assign a self-labeling module to each base learner independently.

This allows to e�ciently utilize and maintain the diversity of base models, as each
classi�er uses di�erent subset of instances that in turn will lead to di�erent
self-labeling outcomes.

We add a continuous pruning of weakest subset of learners to avoid situations
where classi�ers propagate self-labeling errors.

Bartosz Krawczyk, Alberto Cano Part 3: Limited access to ground truth 25 / 28



Hybrid self-labeling ensembles - results

(a) Sensors - QBC (b) Sensors - hybrid
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Hybrid self-labeling ensembles - results

(a) SPAM - QBC (b) SPAM - hybrid
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Ending notes

Q & A time!

Next: Part 4: Advanced problems and open challenges in data stream mining.
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Outline

1 Evolutionary algorithms for drifting data streams

2 Multi-label data streams

3 Open challenges and future directions
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Evolutionary algorithms for drifting data streams

Evolutionary algorithms were traditionally perceived to be too slow for

real-time data streams

Advances in high-performance computing architectures (GPUs and

MapReduce) now allow fast and e�cient distributed computing

Evolutionary algorithms are intrinsically parallel and easy to speed up

Evolutionary algorithms are designed to evolve solutions to �t the

objective function. Self-adapting heuristic to model concept drift.

Genetic Programming evolves a population of trees that can represent

interpretable classi�cation rules describing the stream

Concept drift may be assessed by tracking how the classi�cation rules

change to re�ect changes in the data properties
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Genetic Programming on GPUs for Drifting Data Streams

Evolving Rule-Based Classi�ers with Genetic Programming on GPUs for

Drifting Data Streams1

Main contributions:

Exploit of genetic programming for automatic rule adaptation to

stream changes with no need for explicit drift detection

Rule diversi�cation and stream sampling strategies to allow for both

fast adaptation and maintaining previously learned knowledge

E�cient implementation on GPUs for obtaining competitive runtimes

on data streams

Learning from partially labeled data streams with very limited access

to ground truth

1A. Cano and B. Krawczyk: Evolving Rule-Based Classi�ers with Genetic Programming on
GPUs for Drifting Data Streams. Pattern Recognition, vol. 87, 248-268 (2019)
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Genetic Programming on GPUs for Drifting Data Streams

Context-free grammar to generate classi�cation rules
G = (VN ,VT ,P,S)
VN = {Comparison, Operator , Attribute, Value}
VT = {AND, OR, NOT , <, >, =, 6=, attributes, values}
P = {〈S〉 → AND 〈S〉 〈Comparison〉

〈S〉 → OR 〈S〉 〈Comparison〉
〈S〉 → NOT 〈S〉
〈Comparison〉 → 〈Operator〉 〈Attribute〉 〈Value〉
〈Operator〉 → > | < | = | 6=
〈Attribute〉 → random attribute in dataset ′s features
〈Value〉 → random value within attribute ′s valid domain

}

Genetic operators: crossover and mutation

Bartosz Krawczyk, Alberto Cano Part 4: Advanced problems 6 / 25



Genetic Programming on GPUs for Drifting Data Streams

Sampling sliding window
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Genetic Programming on GPUs for Drifting Data Streams

Parameter con�guration: accuracy and runtime

Windows
Sampling

Rules Pop Gen Accuracy
Train Test RAM

factor Time Time Hours

10 0.25 10 25 50 82.36 0.663 0.038 4.7E-4
10 0.5 10 25 50 82.41 0.656 0.036 3.2E-4
10 0.25 5 25 50 81.91 0.356 0.021 2.3E-4
10 0.5 5 25 50 82.08 0.350 0.018 1.6E-4
5 0.25 10 25 50 82.37 0.578 0.034 3.9E-4
5 0.5 10 25 50 82.59 0.596 0.034 2.8E-4
5 0.25 5 25 50 82.22 0.343 0.017 2.1E-4
5 0.5 5 25 50 82.25 0.338 0.020 1.8E-4

5 0.5 5 50 50 82.28 0.651 0.020 4.2E-4
5 0.5 5 15 25 81.66 0.208 0.017 6.4E-5
5 0.5 10 15 25 82.20 0.384 0.034 1.6E-4
5 0.5 3 25 50 81.38 0.199 0.010 7.4E-5
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Genetic Programming on GPUs for Drifting Data Streams
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Genetic Programming on GPUs for Drifting Data Streams

Accuracy and complexity of the rule base

Number of rules Number of conditions Accuracy
Dataset Atts ERulesD2S VFDR G-eRules ERulesD2S VFDR G-eRules ERulesD2S VFDR VFDRNB G-eRules

R
B
F

10 10 392 28 70 219 54 83.49 77.53 81.71 53.68
100 10 142 34 70 503 67 98.34 87.10 97.78 58.69
1000 10 342 55 74 884 109 99.97 77.04 99.28 59.03
10000 10 368 78 69 2328 143 99.97 59.83 86.97 56.64

R
B
F
-d
ri
ft 10 20 184 94 140 45 185 77.63 58.58 76.42 31.13

100 20 244 110 140 251 184 98.63 63.34 96.18 33.86
1000 20 552 188 149 723 291 99.48 50.60 98.81 35.50
10000 20 814 95 147 1282 190 99.66 30.55 87.45 43.18

H
P
-d
ri
ft
-n 10 20 73 21 88 106 42 82.91 77.39 83.83 49.95

100 20 56 16 88 260 30 80.14 76.63 82.17 50.05
1000 20 273 19 86 467 32 82.22 69.86 73.94 49.96
10000 20 338 13 87 853 24 75.73 48.00 47.60 49.85

R
T
-d
ri
ft

10 20 114 572 140 262 907 58.85 44.35 58.10 48.38
100 20 107 397 139 365 1164 49.78 39.47 46.45 42.47
1000 20 320 314 157 516 937 55.21 55.32 57.00 34.00
10000 20 369 309 163 1356 1409 43.34 36.80 16.69 31.11
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Genetic Programming on GPUs for Drifting Data Streams

Partially labeled data streams (1%, 5%, 10%, 15%, 20%)
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Outline

1 Evolutionary algorithms for drifting data streams

2 Multi-label data streams

3 Open challenges and future directions
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Multi-label data streams

Data may simultaneously be associated to multiple labels Y ∈ {0,1}|L|

x= (x1, . . . ,xD)→ y = (y1, . . . ,yL)

Concept drift may also happen in the distributions of the labelsets

Label cardinality, density, and sparsity become an issue

Problem transformation

Binary Relevance: decompose into L binary classi�cation problems

Label Powerset: transform into a 2L multi-class classi�cation problem

Algorithm adaptation
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MLSAMPKNN

Multi-label punitive kNN with self-adjusting memory for drifting streams2

Main contributions:

Self-adjusting window for varying forms of concept drift

Punitive system to identify and remove instances negatively impact

the classi�er

Computationally e�cient nearest neighbor search

Robustness to label noise and label imbalance

2M. Roseberry, B. Krawczyk, and A. Cano: Multi-label Punitive kNN with Self-Adjusting
Memory for Drifting Data Streams. ACM Transactions on Knowledge Discovery from Data, In
Press (2019)
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MLSAMPKNN

Self-adjusting memory
At time t, the window M contains m instances, formally:

Mm = {st−m+1, . . . ,st}

Several di�erent sized windows Mm′ where m′ ≤m are evaluated based on their subset
accuracy (exact match of all labels), formally:

Subset accuracy =
1

m′
m′

∑
i=0

1 |Yi = Zi

The window Mm′ with the highest subset accuracy is used going forward.

st−m+1
stst−

m
2
+1

st−
m
4
+1

} Mmt+1
=

arg max
m′

(Subset accuracy)
Mm′=m
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MLSAMPKNN

Punitive removal: keeps record of the errors made by each instance

and removes any instance with errors exceeding a given threshold
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MLSAMPKNN

Sensitivity analysis: in�uence of the punitive penalty and the number

of neighbors

Bartosz Krawczyk, Alberto Cano Part 4: Advanced problems 17 / 25



MLSAMPKNN

Distribution of the algorithm ranks
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MLSAMPKNN

Comparison of KNN-based methods
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MLSAMPKNN
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MLSAMPKNN

Robustness to noise in labels (1%, 5%, 10%, 15%, 20%)
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MLSAMPKNN

Contribution of the punitive system
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Outline

1 Evolutionary algorithms for drifting data streams

2 Multi-label data streams

3 Open challenges and future directions
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Open challenges and future directions

Interpretability vs accuracy of drifting data streams: explaining the

concept drift

Explainable arti�cial intelligence (XAI) for non-stationary data
Understanding what and why changed and how can we use this
knowledge to improve adaptation

Learning for extremely sparsely labeled data streams

Learning from data streams without any access to class labels
Merging unsupervised methods with supervised predictors

Multi-view asynchronous data streams

Transferring useful information among multiple data streams
Using di�erent views on data streams to extract more information-rich
representation and better detect drifts

Robustness to adversarial attacks

"Fake" and malicious concept drifts
Appearance of arti�cial classes to increase the class imbalance and
learning di�culty

Bartosz Krawczyk, Alberto Cano Part 4: Advanced problems 24 / 25



Ending notes

Thank you for your attention! Q & A time!
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