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Telecommunications

« analysis of call activity patterns
= Telecom Italia

call activity for Easter Monday

clustermap of incoming calls time series
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Data series

« Sequence of points ordered along some dimension
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Home Networks

+ temporal usage behavior analysis of home networks
Portugal Telecom




Data Centers

« cloud utilization/operation/health monitoring

Neuroscience

« functional Resonance Magnetic Imaging (fMRI) data
= primary experimental tool of neuroscientists
= reveal how different parts of brain respond to stimuli
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Neuroscience

« functional Resonance Magnetic Imaging (fMRI) data
= primary experimental tool of neuroscientists
= reveal how different parts of brain respond to stimuli
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Neuroscience

+ functional Resonance Magnetic Imaging (fMRI) data
primary experimental tool of neuroscientists
reveal how different parts of brain respond to stimuli
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Motivating Examples:
Monitoring Vehicle Operation

b, Zompatins,Papas - EEE 850 2020 34
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Motivating Examples:
Sensor Networks/IoT

= the sensors era
« ubiquitous, small, inexpensive sensors
« applications that bridge physical world to information technology

= sensors unveil previously unobservable phenomena

.r'ﬂ

b, Zomptins,Pogas - EEE g0 2020 2
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Motivating Examples:
Production Control System

s, Zoempton, P - ESE Bg0sa 2020 2
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Motivating Examples:
Monitoring Vehicle Operation
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Data as a Set
Data as a Sequence

« streaming data
window of interest
* landmark window
« sliding window (shifting window)

« may treat streaming data as a set, or as a sequence
depends on whether sequence is important

43
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Motivating Examples:
Production Control System
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Motivating Examples:
Sensor Networks/IoT

= the sensors era
= ubiquitous, small, inexpensive sensors
- applications that bridge physical world to information technology
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Data Series Anomalies Problem
« develop anomaly detection techniques based
on sequences (data series), not on individual

alues
- individual values can be normal, but their
sequence can be abnormal

44
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Data Series Anomalies Problem seavence’s
+ develop anomaly detection techniques based

on sequences (data series), not on individual
values.
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Objectives

« get introduced to the data series data type
characteristics, properties, peculiarities
« learn about
= data series representations
= data series similarity matching
= data series indexing
systems for data series management
challenges and open problems
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Introduction

« lots of work on data series representations
techniques for representing/storing data series

51

150 paints in 3 sequence S

Data Series Anomalies Problem

+ develop anomaly detection techniques based
on sequences (data series), not on individual
values
" individual values can be normal, but their

sequence can be abnormal!

sequences are abnormal

alus e not outsice crial
indiicual values are
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Data Series Representations
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Introduction

« lots of work on data series representations
techniques for representing/storing data series

« main goal

= summarize data series
render subsequent processing more efficient

52
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Data Series (Signal) Processing
Data Series Management

« lots of literature on data series processing
periodicity detection
data series modeling and forecasting
* ARMA, ARIMA
= outlier detection
« focuses on next value

- instead, we will focus on
+ sequences as first class citizens
very large collections of data series
fast and scalable similarity search
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Introduction

« lots of work on data series representations

50

Outline

« terminology and definitions

« motivation

« pre-processing tasks

- data series representation techniques

53



Data series Data series

« Sequence of points ordered along some dimension « Sequence of points ordered along some dimension

Sequence dimension
« terminology: we will use i h bl
= data series, time series, data sequence, sequence

Sequence dimension
« number of data series values, n
= length, or dimensionality

54 55
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Data series Outline
« Sequence of points ordered along some dimension
« terminology and definitions
s |x ° « motivation
EN S . . x :
£ . . . . « pre-processing tasks
- - « data series representation techniques

Sequence dimension
« subsequence
= subset of contiguous values
- eg, sul of length (di ity) 4

57 64
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Analysis Tasks Analysis Tasks

Clustering Outlier

Detection « analyze evolution of values across x-dimension

« identify trends

Frequent
Pattern
Mining

Classification

66 67

16-Nov-20

Data series

+ Sequence of points ordered along some dimension

Sequence dimension
 subsequence
> subset of contiguous values

56

|

Simple Query Answering

select values select values
in time in some
interval range

select some

combinations
data series

65

Analysis Tasks

- analyze evolution of values across x-dimension
« identify trends

- treat data series as a first class citizen
analyze each data series as a single object
process all n-dimensions at once

68



Analysis Tasks
Subsequences

« often times the data series are very long
“n>>1

= streaming data series

69

Complex Analytics

Outlier
Detection

Clustering

HARD, because of very high dimensionality:
each data series has 100s-1000s of points!

Mining

Similarity
Search

72

Motivation

« effective representation techniques to the rescue!
= can significantly reduce the processing time
+ typically much smaller than original/raw data series

« will learn how to compute and use these representations
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Analysis Tasks

Subsequences

« often times the data series are very long
°n>>1
= streaming data series

« we then chop the long sequence in subsequences
= e.g., using sliding window, or shifting window
= pick carefully length of subsequence
+ should contain patterns of interest
and process each subsequence separately
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Complex Analytics

Clustering e

b of very high di i i
each data series has 100s-1000s of points!

even HARDER, because of very large size:
millions to billions of data series (multi-TB:

i
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Motivation

« effective representation techniques to the rescue!
= can significantly reduce the processing time
+ typically much smaller than original/raw data series

« will learn how to compute and use these representations

- these representations can further be used for indexing

76
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Complex Analytics

Outlier
Detection

Clustering

Frequent
Classification Pattern
Mining

71
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Motivation

« effective representation techniques to the rescue!
= can significantly reduce the processing time
+ typically much smaller than original/raw data series
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Motivation

« effective representation techniques to the rescue!
> can significantly reduce the processing time
+ typically much smaller than original /raw data series
«+ will learn how to compute and use these representations

- these representations can further be used for indexing

« all guarantee correct, exact results!

77
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~ Pre-P i
Outline re-Processing

Pre-Processing
z-Normalization

z-Normalization
« terminology and definitions - data series encode trends
« motivation

« usually interested in identifying similar trends
« pre-processing tasks
- data series representation techniques

- data series encode trends
- usually interested in identifying similar trends

« but absolute values may mask this similarity

78 79 80
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Pre-Processing

Pre-Processing
z-Normalization

Pre-Processing
z-Normalization

z-Normalization
;III 1[
.- . I ! .- .
Sequence dimension
« two data series with similar trends « two data series with similar trends * zero mean
« but large distance...

compute the mean of the sequence
= subtract the mean from every value of the sequence
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Pre-Processing

Pre-Processing
z-Normalization

Pre-Processing
z-Normalization

z-Normalization
.« . . HERE . b I 1 1
— - . - : . i ' ; ¢
* Zero mean * Zero mean . * Zero mean !
compute the mean of the sequence compute the mean of the sequence compute the mean of the sequence
= subtract the mean from every value of the sequence = subtract the mean from every value of the sequence

= subtract the mean from every value of the sequence
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Pre-Processing
z-Normalization

—t < T
« zero mean .

« standard deviation one
compute the standard deviation of the sequence
divide every value of the sequence by the stddev
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Pre-Processing
z-Normalization

. : 1
H 3 ¥

* zero mean
- standard deviation one

90

Outline

« terminology and definitions

« motivation

« pre-processing tasks

« data series representation techniques
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Pre-Processing
z-Normalization

88

o .
* Zero mean N

« standard deviation one
compute the standard deviation of the sequence
divide every value of the sequence by the stddev

"

Pre-Processing
z-Normalization

« when to z-normalize
interested in trends

91
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Pre-Processing
z-Normalization

* Zero mean

- standard deviation one
compute the standard deviation of the sequence
divide every value of the sequence by the stddev

89
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Pre-Processing
z-Normalization

« when to z-normalize
interested in trends

« when not to z-normalize
interested in absolute values
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L Discrete Fourier — ‘

ErEE (@70) N Basic Idea: Represent the time

series as a linear combination of

\/_/\/\‘ sines and cosines

v e wwrwee Transform the data from the time )
—___— "~ _  domain to the frequency domain Jean Fourier
N 1768-1830
_\_ ~_ "\ Highght the periodiities but keep
NaVaVaVal only the first /2 coefficients

o~~~ .  Why /2 coefficients?
v Because they are symmetric

Excelent free Fourler Primer

Hagit Shatkay, The Fourier Transform - a Primer", Technical Report C5-
. |9537, Departmentof Computer Science, Brown Universty, 1995.




P euce rourer - T

Transform...recap
. Pros and Cons of DFT as a time series

. representation
\/_/\/\ Pros:

+ Good ability to compress most natural signals
« Fast, off the shelf DFT algorithms exist

TN
. O(riog(r))
e VNV aNs
VAVAVAVA
. .
T L Difficult to deal with sequences of different
PRGN lengths

———____ )

iecewise Aggregate

Approximation (PAA) gagic 1dea: Represent the time series as a

sequence of box basis functions, each box
. being of the same length

J_,_,_\_,—'_L *  Computation:
+ X: time series of length n

Can be represented in the N-dimensional

space as:

BINIXINIxIHIXIx5]

L —

iecewise Linear

roximation (PLA)
Appr P s and Cons of PLA as a time series

representation

Pro
= Good ability to compress natural signals

— = Fast linear time algorithms for PLA exist

/ = Able to support some interesting non-Euclidean
similarity measures
« Already widely accepted in some communities
(i.e., biomedical)

~ Cons:

. Not (currently) “indexable” by any data structure
- (but does allow fast sequential scan)

102

Discrete Wavelet

Transform (DWT)

Basic Idea: Represent the time series as a
linear combination of Wavelet basis functions,
but keep only the first N coefficients

Obtained from a single prototype wavelet y(t)
called mother wavelet by dilations and shifting:

where a s the scaling parameter and b is the
shifting parameter

Excellent free Wavelets Primer

Stolinitz, E, DeRose, T, & Salesin, D. (1995).
Wavelets for computer graphics A primer: IEEE
Computer Graphics and Applications.

L —— .

iecewise Aggregate
Approximation (PAA)

LRI IR-1E- 18- 1111

Adaptive Piecewise
Constant

Pros and Cons of PAA as a time series
representation.

Pros:

« Extremely fast to calculate

» As efficient as other approaches (empirically)
« Support queries of arbitrary lengths

« Can support any Minkowski metric

« Supports non Euclidean measures

« Supports weighted Euclidean distance
 Simple! Intuitive!

« If visualized directly, looks aesthetically
unpleasing

Basic Idea: Represent the time series as a

Approximation (APCA)  sequence of box basis functions, each box being

. <oy >

of the different length

* High quality of APCA noted by many
researchers
* Can be indexed*!

Unfortunately, it is non-trivial to understand and
implement and thus has only been re-implemented
once or twice

I e A5

<an >

<cv,cr> | Locally adaptive dimensionaiity reduction for indexing

[

103

*K. Chakrabarti, E. J. Keogh, S. Mehrotra, M. J. Pazzani:

large time series databases. ACM Trans. Database Syst.
27(2): 188-228 (2002)
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Discrete Wavelet
Transform (DWT)
*  Pros and Cons of DWT as a time series

J_I_I_\_,_I—\— = representation
DWT
LS Pros:

« Good ability to compress stationary signals

= -k Can be computed in linear time
Cons:
[ Signals must have a length 7= 25ome.inieger
Ls . = Works best if ¥ is = 2sme.iteoer; Otherwise
—I | " wavelets approximate the left side of signal at
,—‘ the expense of the right side

Piecewise Linear

N " Basic Idea: Represent the
Approximation (PLA) ;0 e e ny as a
sequence of straight lines
(size N)

Karl Friedrich Gauss
1777 - 1855

Lines could be connected
=> N/2 lines allowed

Lines could be disconnected /\/

achine segment has
Vi => N/3 lines allowed S

1 latt hetont
(zight height can
be inferred by looking
at the next segment)

Empirical evidence on dozens

_— of datasets suggests that
disconnected is better \

<

Aso only disconnected —

allows a lower bounding

Each line segment has
h Sengen
\  Euclidean approximation

+ left_heignt
+ rignt_height

101

Adaptive Piecewise

Approx(i:r?lra‘:itgrr\‘t(AP(‘A) Pros and Cons of APCA as a time
series representation
Pros:

P = Fast to calculate O(r)
J—I_L More efficient than other approaches
Supports queries of arbitrary lengths
Supports non Euclidean measures
Support fast exact queries, and even
faster approximate queries on the same
data structure

- <anan>
R
<cw,cn>  Cons:
+ Somewhat complex implementation
<cv, > P !
n « If visualized directly, looks ascetically
unpleasing

104
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SAX Representation

- Symbolic Aggregate approXimation
S
» (1) Represent data series Tof length n

with w segments using Piecewise :
Aggregate Approximation (PAA) oxsrn
- T typically normalized to 1 = 0,0 = 1

« PAA(Tw) =T

T

where f=% )
i

nan

= (2) Discretize into a vector of symbols
+ Breakpoints map to small alphabet @ =
of symbols

109

Distance Measures

+ similarity search is based on measuring distance between
sequences
+ dozens of distance measures have been proposed
= lock-step
Minkowski, Manhattan, Euclidean, Maximum, DISSIM, ..
= sliding
+ Normalized Cross-Correlation, SBD, ..
o elastic
+ DTW, LCSS, MSM, EDR, ERP, Swale, ...
¢ kernel-based
+ KDTW, GAK, SINK, ..
o embedding
* GRAIL, RWS, SPIRAL, ...

138

Euclidean Distance

NRRRRERE

« Euclidean distance
pair-wise point distance
ED(X,V)

141

Similarity Seareh

136

Euclidean Distance

139

T

Correlation
« measures the degree of relationship between

data series
= indicates the degree and direction of relationship

142
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Distance Measures

- similarity search is based on measuring distance between
sequences
« dozens of distance measures have been proposed
lock-step
« Minkowski, Manhattan, Euclidean, Maximum, DISSIM,
sliding
+ Normalized Cross-Correlation, SBD,
« elastic
* DTW, LCSS, MSM, EDR, ERP, Swale,
= kernel-based
+ KDTW, GAK, SINK,
< embedding
* GRAIL, RWS, SPIRAL, ...

137

T

Euclidean Distance

NRRRREEE

140

T

Correlation

« measures the degree of relationship between
data series
= indicates the degree and direction of relationship
« direction of change
positive correlation
+ values of two data series change in same direction
= negative correlation
+ values of two data series change in opposite
directions

143
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. . , . o .
Correlation Correlation Pearson’s Correlation Coefficient
« measures the degree of relationship between data « measures the degree of relationship between data series « used to see linear dependency between values of data series of
series = indicates the degree and direction of relationship equal length, n
= indicates the degree and direction of relationship « direction of change e 1 Xi— X\ (v - ¥
« direction of change pnnlneuvrreldlmn =i-1 ™ 5
= positive correlation s of two data series change in same direction =
- values of two data series change in same direction « negative comearion
negative correlation + values of two data series change in opposite directions
: . . . I « linear correlation
« values of two data series change in opposite directions N . . .
i Jati amount of change in one eries bears constant ratio of
« linear correlation

change in the other data serie:
= amount of change in one data

ratio of change in the other data

TS constant

« useful in several applications

144 145

146

T )

9 : T y. . P
Pearson’s Correlation Coefficient Pearson’s Correlation Coefficient PC and ED
3 used to see linear dependency between values of data series of « used to seell lmear dependency between values of data series of « Euclidean distance: ED =
equal length, n equal length, =
L S — + In case of Z-normalized data series (mean = 0, stddev = 1):
PC= 2 Xy (n=y Xy (n=y P . N
1o\ sy sy e S5y =520 vy and ED?= 27\(7.—1)-221 o
N so the following formula s true: ED? = 2(n — 1)(n — PC)
- where 7 is the mean: £ = - B2 x; + takes values in [-1,
" L i ersedirect correlation « direct connection between ED and PC for Z-normalized data
’ : series
+ and s, is the standard deviation: s, = + there is a statistical test connected.to PC, wherenu]lhypothesls * if ED is calculated for normalized data series, it can be dircetly
& no correlation case (correlation costhicient = 0) used to calculate the p-value for statistical test of Pearson’s
= test is used to ensure that the correlation similarity is not caused by correlation instead of actual PC value.
a random process

147 148 149

—
Distance Measures:
LCSS against Euclidean, DTW

Ll
Distance Measures:
LCSS against Euclidean, DTW

Distance Measures:
LCSS against Euclidean, DTW

« Euclidean

« Euclidean
« rigid

« rigid

« Euclidean

- rigid

- Dynamic Time Warping (DTW)

- Dynamic Time Warping (DTW)
+ allows local scaling

allows local scaling

+ Longest Common SubSequence (LCSS)
allows local scaling
ignores outliers

150 151

152
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154 155
Similarity Matchin Similarity Matching Similarity Matching
Y s Nearest Neighbor (NN) Search Nearest Neighbor (NN) Search
« given a data series collection D and a query data series q, « given a data series collection D and a query data series q, « given a data series collection D and a query data series g,
return the data series from D that are the most similar to q return the data series from D that has the smallest distance to q
= there exist different flavors of this basic operation

return the data series from D that has the smallest distance to q
« basis for most data series analysis tasks

« result set contains one data series

153 154 155

]

—
Similarity Matching Similarity Matching Similarity Matching

Nearest Neighbor (NN) Search Nearest Neighbor (NN) Search k-Nearest Neighbors (kNN) Search

« serial scan

+ serial scan - given a data series collection D and a query data series q,
= compute the distance between q and every d; € D = bsf = Inf // best so far distance return the k data series from D that have the k smallest
return d; with the smallest distance to q = for every d; € D distances to q
ce, dist, between dand q

han bsf then bsf=dist
= return d; corresponding to bsf

156 157 158

159

Y

Similarity Matching

Similarity Matching
k-Nearest Neighbors (kNN) Search

k-Nearest Neighbors (kNN) Search
« given a data series collection D and a query data series q,

- serial scan
return the k data series from D that have the k smallest
distances to q

Similarity Matching
k-Nearest Neighbors (kNN) Search

« serial scan
compute the distance between q and every d; € D kbsf = Null
return the k d; with the k smallest distances to q

for every d;€ D
« result set contains k data series

// best so far max-heap of k elements

+ compute distance, dist, between d;and q
+ ifthis di

s than max of kbsf then insert dist in kbsf
return k d; corresponding to k elements in kbsf

159 160 161
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Similarity Matching Similarity Matching Similarity Matching
e-Range Search e-Range Search e-Range Search
« given a data series collection D and a query data series q, « given a data series collection D and a query data series q, « serial scan
return all data series from D that are within distance & from q return all data series from D that are within distance ¢ from q compute the distance between q and every d; € D

return all d; with distance less than ¢ to q
« result set contains [?] data series

162 163 164

e — | =n o7 |

Similarity Matching
e-Range Search

Series Series &
« serial scan /1
= res={} // empty result set

= for every d; € D Univariate
+ compute di
-+ if this dist
= return all d; corresponding to elements in res

Problem Variations Problem Variations

each point represents one
value (e.g., temperature)

165 166 167

i o}

Problem Variations 5 Problem Variations Problem Variations
[e]
[2] .
Series A £ Series A Queries
Univariate Multivariate Univariate M
each point represents one each point represents many each point represents one
value (e.g., temperature) values (e.g., temperature, value (e.g., temperature) Whole matching
humidity, pressure, wind, etc.)

Entire query
Entire candidate

168 169 170
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Problem Variations

Queries

No=< N\

Whole matching matching
Entire query Entire query
Entire candidate A subsequence of a candidate

171

Problem Variations

Queries

No<

Whole matching
Entire query
Entire candidate

172
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Problem Variations

Distances
Euclidean Distance (ED)
Dynamic Time Warping (DTW)
Longest Common Subsequence (LCSS)
Edit Distance
And more...

173

Methods

174

Methods

0<scLen0

¢ guarantees

ng-Approximate.

* resultis within distance
(1+ 0 of he exact answer
with probabilty §

177

Methods

ng-Approximate.

175

T

Methods

0<8c1e20

5. guarantees

ng-Approximate.

* resultis within distance
(14 0) of the exact answer
with probabilty §

178

Methods

5-cApproximate”

ng-Approximate

* resultis within distance
(14 ) of the exact answer
With probabilty

176

)

Methods

5c Approximate”
b1, & guarantee ] | 6=1, ¢ guarantee
=1, = 0 guarantee
Probabilstic eApproximate 3

Com D

ng-Approximate.

= result s within distance
(1) of the exact answer
with probabilty §

179
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Methods

0€8sLe30

Techniques fordata Series
Techniques for High-D vector

¢ guaraiees No guarantes

ScApproximate”
<1, ¢ guarantee ][ 6=1, ¢ guarantee

* result s within distance
(1+ ) of the exact answer
‘with probabiity &

MASS  VAtiie

180

Methods

o<o<teno
Semmproima
[par—
ot

ADS+  Rlwe
S

Techniques for data Series
Similarity Search Techniaues for Hgh-Duector
thod:

No guarantees

ng-Approximate.

S Stpuise ) ofhe exach anwer
b UCRSute Cinrobatiye
MASS  VAsfile o v
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Techniues fordata Sries
Techniaues for igh-Dvectors

Hethods D
ocseren0

&WWM.
o<1, c e TLo= . e T

0210 guarmntee
(Cprovavitstic ) (eapproxmate o

=

o5 mm
oot S * rosls it dtonce

A Supise (1ot axactanower
iz Uck i probasiiys

Query answering process
e e S TP T T F I

Dota Loading Procedure. Query Answering procedure

Data Series.

Raw data Database/
Indexing

data-to-query time

Echiabi, Zoumpatane, Palpanas -EEE gData 2020 .
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Query Answering

184

Query answering process
e e S TP T T F I

Data Loading Procedure. Query Answering Procedure

Data Series

Raw data tal
Indexing

data-to-query time query answering time

Echina, Zoumpatine, Palpanas -1EEE BgData 2020 "
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Methods

0oL en0

Techniques for data Sries
Techniques for High-D vectors

b6 guarantees No guarantees

Semmroma
p—
Pt

ng-Approximate.

ultis within distance
(14 ) of the exact answer
with probabilty

« extensions

MASS  VAsfie

182

Query answering process
e P P T PP T T T T

Data Loading Procedure Query Answering Procedure

Raw data

Echas, Zoumpstanos, papanas - EEE Bgoata 2020 o

185

Query answering process
B —————— T P T PP T T T T

Data Loading Procedure Query Answering Procedure

Queries

Data Series
Database/
Indexing.

Raw data

data-to-query time

these times are big!

chas, Zoumpatans, apanas - EEE Bgoata 2020 ™
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Similarity Search via
Serial Scan

Echiabi, Zoumptines, Palpans - EEE BgDats 2020
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Similarity Search via
Indexing

Echiabi, Zoumpatanes, Palpanas - EEE gData 2020
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Similarity Search via
Indexing

Echiabi, Zoumpatane, Palpanas -EEE gData 2020
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Similarity Search via
Serial Scan

Echibai, Zoumpatincs, Plpans - EEE BigDats 2020
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Similarity Search via
Indexing

Echiva, Zoumpatine, Plpanas - EEE BgData 2020

193

Query answering process

Data Series
Raw data Database/
Indexing

T L LLLITFFTLLD

Data Loading Procedure. Query Answering Procedure

data-to-query time

we need solutions
for both problems!

Echina, Zoumpatine, Palpanas -1EEE BgData 2020
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v
query answering time

Similarity Search via
Serial Scan

s, Zoumpatons, Palpanas - EEEBgOat 2020

191

Similarity Search via
Indexing

chas, Zoumostanos, alpanas - EEEBg0ata 2020
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Similarity Matching
Fast Euclidean Distance

16-Nov-20

- similarity matching requires many distance computations

tly slow down processing
large number of data s
se of high dimensionality of

197

s in the collection
ch data series
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Similarity Matching
Fast Euclidean Distance

- similarity matching requires many distance computations
can significantly slow down processing
* because of large number of data series in the collection
* because of high dimensionality of each data series

« in case of Euclidean Distance, we can speedup processing by
= smart implementation of distance function

+ early abandoning

198

I —

Similarity Matching
Fast Euclidean Distance

- smart implementation of distance function
= do not compute the square root (of the Euclidean Distance)

EDOLY) = ) (= yi)?
:

201

— |
Similarity Matching
Fast Euclidean Distance

+ early abandoning
stop the distance computation as soon as it exces

s the value of bsf

ED(X,Y) = Z(xi -y)?, m<n

=

+ does not alter the results
+ avoids useless computations

204

Similarity Matching
Fast Euclidean Distance

+ similarity matching requires many distance computations
can significantly slow down processing
- because of large number of data series in the collection
- because of high dimensionality of each data series

« in case of Euclidean Distance, we can speedup processing by
« smart implementation of distance function
+ early abandoning

+ resultin considerable performance improvement

199

—— |
Similarity Matching
Fast Euclidean Distance

- smart implementation of distance function
= do not compute the square root (of the Eu

dean Distance)

EDOLY) = ) (=)

- does not alter the results
« saves precious CPU cycles

202

GEMINI Framework

Raw data: original full-dimensional space

Summarization: reduced dimensionality space

Searching in original space costly

Searching in reduced space faster:

— Less data, indexing techniques available, lower bounding

205
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Similarity Matching
Fast Euclidean Distance

« smart implementation of distance function

200

Similarity Matching
Fast Euclidean Distance

+ early abandoning

= stop the distance computation as soon as it exceeds the value of bsf

ED(X,Y) = Z(x; -y  m<n

(=

203

GEMINI Framework

Raw data: original full-dimensional space
Summarization: reduced dimensionality space
Searching in original space costly

Searching in reduced space faster:

— Less data, indexing techniques available, lower bounding
Lower bounding enables us to

— prune search space: throw away data series based on
reduced dimensionality representation
— guarantee correctness of answer

« no false negatives

« false positives filtered out based on raw data

206



GEMINI Framework

GEMINI Solution: Quick filter-and-refine:

extract m features (numbers, e.g., average)

* map to point in m-dimensional feature space

organize points

retrieve the answer using a NN query

discard false positives

208

Lower Bounding

We can speed up similarity search by using a lower bounding function
= D: distance measure

= 18: lower bounding function s.t.: ~ LB(Q, $) < D(Q,$)

LNN Search Using LB

> Setbest = =
> For each s;
ifLB(5, Q) < best
ifD(s, Q) < best

Intuition
¥ Try to use a cheap lower
bounding calculation as
often as possible

¥ Do the expensive, full best = 0[5, Q)
calculations when
absolutely necessary fande Query Usng L8
For each 5;
>ifB(s, Q)<e
ifDls, Q) <e
report 5,

211

Lower Bounding
‘we compute the distance LB(S,,Q) and it is
greater than the BSF
we can safely prune it, since D(S,,Q) = LB(S,,Q)

r T T
a trues, B,  distance

214

Generic Search using Lower Bounding

Original DB

Answer
simplified DB Qi

>

Verify
against
original
No false o8
negatives!!

N\ s

209

Lower Bounding

we want to find the 1-NN to our query data series, Q

16-Nov-20

GEMINI: contractiveness

Final
Answer
set

* GEMINI works when:

Dreature(F(X), F(y)) <= D(x, y)

-
=

Remove false

212

Lower Bounding

we compute the distance LB(S;,Q) and it is smaller than the BSF
we have to compute D(S,,Q) LB(S,,Q), since it may still be
smaller than BSF

o~

: : ‘
s e, s

215

positives!! * Note that, the closer the feature distance to the
actual one, the better
Lower Bounding
we compute the distance to the first data series in
our dataset, D(5,,Q)
this becomes the best so far (B5F)
r \\
distance a true s, distance
Lower Bounding
it turns out that D(S,,Q) BSF, so we can safely prune S,
r T T T
distance a trues,  true, XSI distance

216
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Lower Bounding Lower Bounding Lower Bounding

we compute the distance LB(S,,Q) and it is smaller than the BSF

we have to compute D(S,,Q) LB(S,,Q), since it may still be
smaller than BSF it turns out that D(S,,Q)< BS, 50 S, becomes the new BSF

\ \ \ \ — \ \ — \
a wes, e s, dsonce a 15, wes, el K5 dstonce a s, wes, e s dsance

217 218 219

T — —
Lower Bounding DSTree
Summarization

¥=[-15-05,05 1525 15226|

e placmed Datta Serles Indexing

f <7 T
a true's, «r}é (rx} >(sZ distance

APCA(Y) = [-11.215] BAPCAY) = (11041102112 150.25
() APCA ) EAPCA
Intertwined with indexing

The APCA and EAPCA representations

220 221 222

‘ e 205

DSTree Symbolic Fourier Approximation (SFA) SFA
Indexing Summarization Indexing
V= [-15-05 05, 15,25,15.2 2.6) - [
Each node contains
' Q # vectors

0 segmentation SG
Q synopsis Z

m.-«m
i
i

Each Leaf node also :

Q stores its raw
! vectors in a separate
7/ disk file The SFA i The SFA Trie*

223 224 225
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AN 226 SdE 227 Sid? 228
pproximate
. o= Exact Search
iSAX iSAX P RS Uses alower
e ‘bounding function

« based on iSAX representation, which offers a bit-aware,

quantized, multi-resolution representation with variable

granularity

= {6, 6, 3, 0} = {110 ,110 ,0111 ,000}

\\//f 11 10 1]t 1 1 o1
x\/’f: {3,3, 1,0y = {11 ,11 ,011 ,00} )

227

228

e 230 ‘
. Extensions
iSAX2+ ADS+
+ implements bulk loading strategy for iSAX: « novel paradigm for building a data series index
+ does not move around (read/write) raw data of data series = does not build entire index and then answer queries + Coconut: current solution for limited memory devices
and its approximation unless necessary = starts answering queries by building the part of the index and streaming time series
« intuition for proposed solution: needed by those queries = bottom-up, succinct index construction based on sortable
iSAX grows fast at the beginning of bulk loading, its shape + still guarantees correct answers summarizations
stabilizing well before the end of the process P .
« intuition for proposed solution
= several data series end up in leaf nodes that never need to split builds index usi Iy i . large leaf si
mplement lazy splitting: - builds index using only iSAX summaries; uses large leaf size
- move raw data to leaf node the first time = postpones leaf materialization to query time
if leaf node splits, do not move raw data until the end of index

only materialize (at query time) leaves needed by queries
building process

= parts that are queried more are refined more

use smaller leaf sizes (reduced leaf materialization and query
answering costs)

229 230 297

|
[Coconur-isv |

Extensions... Extensions... Extensions..

- C

Arsabysimate sttty o e

+ Coconut: current solution for limited memory devices i
and streaming time series

= bottom-up, succinct index construction based on sortable
summarizations

= outperforms state-of-the-art in terms of index space, index

. = construction time, and query answering time

(L. Zz

298 299
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Extensions.

« Coconut: current solution for limited memory devices
and streaming time series
bottom-up, succinct index construction based on sortable
summarizations

= outperforms state-of-the-art in terms of index space, index
construction time, and query answering time

+ ULISSE: current solution for variable-length queries

= single-index support of queries of variable lengths

= orders of magnitude faster than competing approaches

304

Parallelization/Distribution

« DPiSAX: current solution for distributed processing (Spark)
balances work of different worker nodes
= performs 2 orders of magnitude faster than centralized solution

307

Extensions

« Coconut: current solution for limited memory devices
and streaming time series
= bottom-up, succinet index construction based on sortable
summarizations
© outperforms state-of-the-art in terms of index space, index
construction time, and query answering time

« ULISSE: current solution for variable-length queries
+ single-index support of queries of variable lengths

302

Parallelization/Distribution

+ DPiSAX: current solution for distributed processing (Spark)
= balances work of different worker nodes

305

T

Parallelization/Distribution

« DPiSAX: current solution for distributed processing (S
= balances work of different worker nodes
= performs 2 orders of magnitude faster than centralized solution

« ParlS: current solution for modern hardware
= completely masks out the CPU cost

308
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Extensions

« Coconut: current soluf
and streami
= bottom-up, succinet it

© outperforms state-of-
construction time, ang

+ ULISSE: current solut]
+ single-index support

303

and® 306 ‘

Parallelization/Distribution

- DPiSAX: current solution for distributed processing (Spark)

[T

ane 00

Parallelization/Distribution

« DPiSAX: current solution for distributed processing (S

22



« DPiSAX: current solution for distributed processing (!
+ balances work of different worker nodes
+ performs 2 orders of magnitude faster than centralized solution

« ParlS: current solution for modern hardware
= masks out the CPU cost
= answers exact queries in the order of a few secs
+ 3 orders of magnitude faster then single-core solutions

310

+ DPiSAX: current solution for di

balay _ k-NN Classification
o perfc R il solution
« ParlS:
= mas
o answ|

o

NN SNN 10NN SO-NN
Mumber of nearest neighbers

311
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Parallelization/Distribution

+ DPiSAX: current solution for distributed processing
balaf k-NN Classification
perfc

WADS: mParlS fl solution

I_ _ B

NN SNN 10NN SO-NN
Mumber of nearest neighbers

« ParlS:
= mas]
= answ

©3

312

k-NN Classification ‘

classifying 100K objects using a 100GB dataset
goes down from several days to few hours!

o answ
©3 -

AN OENM 10NN S0NN
Number of pearest neighbors

313

and

Experimental Comparisomns?
Exact Query Answering Methods

316

DPiSAX: current solution for distributed processing (Spar
= balances work of different worker nodes
= performs 2 orders of magnitude faster than centralized solu

« ParlS: current single-node parallel solution
= masks out the CPU cost
= answers exact queries in the order of a few secs
- >1 order of magnitude faster then single-core solutions
MESSI: current single-node parallel solution + in-memory data
© answers exact queries at interactive speeds: ~50msec on 100GB
SING: current single-node parallel solution + GPU + in-memory data
i s: ~32msec or GB

= answers exact queries at int

314

T

How do these methods compare?
« several methods proposed in last 3 decades
« never carefully compared to one another

« we now present results of extensive experimental comparison

317

iSAX Index Family

timelne - 2008 - 2010 2014 2015 207 o8 2010 2020
basic
ndex

+ Buik
Loading

« Adapive

Spark)

+ Distrinuted

icore,
MullSocket, SHD

+ Graphics processing
Unts (GPUs)

+ Sortable Summarizatons,
Sireaming Data Series

—
.

— T | c

+ Variable-Lengih Queries

S it dterminsie snd probabSte QU garaocs. ‘

315

T

Experimental Framework

+ Hardware
= HDD and SSD
+ Datasets
= Synthetic (25GB to 1TB) and 4 real (100 GB)
+ Exact Query Workloads
100 ~ 10,000 queries
« Performance measures
Time, #disk accesses, footprint, pruning, Tightness of Lower
Bound (TLB), etc.
= C/C++ methods (4 methods reimplemented from scratch)
« Procedure:
Step 1: Parametrization
Evaluation of individual methods
ison of best methods

3: Compa

318
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Time for Indexing (ldx) vs. Dataset
Size

Time for Indexing (ldx) vs. Dataset
Size

Time for Indexing (ldx) vs. Dataset
Size

& &
e e :
SO H
PSP
/ / R
ADS+ fastest ADS+ fastest Dataset Size (GB)
A0~ DhYee 5 e - e 4 A Bae

319 320 321

T

Time for 100 Exact Queries vs.
Dataset size

100

Time for 100 Exact Queries vs.
Dataset size

Time for 100 Exact Queries vs.

Dataset size

100

 disk

DSTreefastest

0.1 @
&
P OSAS P S
In-memory: Dataset Size (GB) In-memory: Dataset Size (GB)
VAdfile fastest VA+file fastest
e - e s 108 4 Ot -5 A —— A - e U s

322 323 324

dnd® 329

Time for Idx + 10K Exact Queries vs.

Time for Idx + 10K Exact Queries vs.

Dataset size

e 9«@_‘}“&;
Dataset Size (GB)

328

Time for Idx + 10K Exact Queries vs.
Dataset size

S
Dataset Size (GB}
In-memory:

VAfile fastest’

329

Dataset size
1000
100 i N
DSTreefastest

0 &
S
Dataset Size (GB}

In-memory’
VAfile fastest’

4080 o Do - AR —— S5 8- VR 4 R e

330
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Time for ldx + 10K Exact Queries vs.
Series Length

331

Unexpected Results

« Some methods do not scale as expected (or not at all!)

« Brought back to the spotlight two older methods VA+file
and DSTree
Our reimplementations outperform by far the original ones
« Optimal parameters for some methods are different
from the ones reported in the original papers
« Tightness of Lower Bound (TLB) does not always
predict performance

334

TLB does not always predict
performance

The TLB measures the quality of a summarization (higher is

better) TLB = dist(Query.candidate) in reduced space
dist(Query,candidate) in original space

337

Time for Idx + 10K Exact Queries vs.
Series Length

_—A—4>A— _ steady performance for
B

332

TLB does not always predict
performance

335

TLB does not always predict
performance

The TLB measures the quality of a summarization (higher is
better) _ dist(Query.candidate) in reduced space

0< TLB= dist(Query,candidate) in originalspace 1
worst best

338
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Time for Idx + 10K Exact Queries vs.
Series Length

_#— k=% steady performance for
hﬁ‘ 5 BeRA

mostmethods

—
«—— VA+fileand ADS+ get faster
withincreasing length

Dataset Series Leng!
(Size = 100GB, Dimensions = 16)

333

N 336 ‘
TLB does not always predict
performance
The TLB measures the quality of a summarization (higher is
better)

336

)

TLB does not always predict
performance

The TLB measures the quality of a summarization (higher is
better) _ dist(Query,candidate) in reduced space

0< TLB= dist(Query,candidate) i originalspace 1

worst best

DSTree and ISAX2+ have simiar TLE

F oS g
o s Loram
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TLB does not always predict
performance

The TLB measures the quality of a summarization (higher is
better) . 7 g = dist(Query candidate) inreduced space

=<1
dist(Query,candidate) in original space

worst est

DSTree and iSAX2+ have similar TLE

10
T T 100

o /I BT YET 10 sz 5 slowerthan
ot s

- Hl
T T T s

LR T
P &

E Dataset Size (GB)
Dt Saries Langihy

340

Time Series Management Systems

343

Storing Time-Series:
DBMS

lllustra (1993) & IBM Informix (Time-Series DataBlade):

+ Users need to define a time-series sub-type, which have a datetime as the
first column in the definition

+ Can encode both regular and irregular time-series (fixed of variable
intervals)

+ Can describe meta-data

+ Supports: running aggregates, prev, next value reasoning, horizontal and
vertical mathematical operations, lags, etc.

Shore S SEQ
+ Custom Time-Series Data Type
+ Various time-series operators (order, correlation, etc.)

Oracle:

+ Introduced Time-Series functionality in Oracle8

+ Now merged into the main product.

+ i inthe form of time:series analytis funciions (e.g., forecasting)
Bapa 2020

346

TLB does not always predict
performance

The TLB measures the quality of a summarization (higher is
better) . 7 g = dist(Query candidate) in reduced space

=<1
dist(Query,candidate) in originalspace  —

worst best

DSTree and iAX2+ have simiar TLB

B R 100
o TTT ver i5AX2+ 5k slowe than
3¢ = o DSTree
oo W 8 o1
PR PSSP
4 Ontser S (G8)
ot Sari Lo

No bias, same data and same implementation framework

341

Storing Time-Series

Multiple options. By popularity:

File System

Ti ies DBs ‘

Array DBs

Echab, Zoumpaianos Papanes - TEEE
‘gD 2020

344

Storing Time-Series:
DBMS

illustra (1993) = IBM Inforp 35 DataBlade)
+ Users need to define
first column in the

which have a datetime as the

of variable

Most people use DBMSs merely for storing

and retrieving time-series.
PP Al anaysis is performed externally.
+ Various tim

Oracle:

| Commercaisyziem |
0 the main product.
+ Itis in the form of time-series analytics functions (e.g., forecasting)

Bopa 2020
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Insights

« Results are sensitive to:
© Parameter tuning
© Hardware setup
« Implementation
= Workload selection

* Results identify methods that would benefit from modern
hardware

342

Storing Time-Series:
File-System

Multiple different formats implemented for various applications

~ B0s (EEG)
- WD (£CG)
- Eorece)

- FASTA ONA)

Cems
- oFs

345

Storing Time-Series:
Specialized Time-Series DBs

e, Zoumpasianos, P s ”
‘gD 2020

348
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Storing Time-Series: Storing Time-Series: Time-Series Characteristics
ArrayDBs ArrayDBs \
SV NP Y
Custom Log-Structured  Sits on top of existing Custom storage
storage .
349 350 351
Time-Series Characteristics Time-Series Characteristics Time-Series Characteristics
PP A P PP P
352 353 354
Time-Series Characteristics Time-Series Characteristics Time-Series Characteristics

Sequential attributes

o W o W o W

- N2 "W - N2 "W o N2 "W

o \W\_,,/ o \»._f\/\_,,/ c0. \W\_,,/
355 356 357
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Time-Series Characteristics Query Types

simple

[ Complex

Selection-Projection-Transformation AnalytcaliMining Qu

]

358 359

Query Types Storage

S SN
el rfctonTansormtion

361 362

Storage Stonng metadata Schema

Storing metadata

|l — e
1 M\%

364 365

Query Types

simple
Selecton-projecton-Translormation

360

363

366

Storage

Schema

<W
NN,

16-Nov-20
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367

370

Simple Conclusion

Order by sequence id

NN

A e UV
v"\/\'\«\,,
\«.—/\/\,J

Order by position

filtering on positions &
5

Heavy fitering on series 18
accessing ots of positions:

Most existing systems
sort data by series

sequence-first

373

BlgDita 2020

e on oskion - Clstered ndeon s,

jons 355 ofpostions 455 o ostions

Order by sequence id

W

Mary series Position-first
Simple Conclusion Alsees Al
Fowsosans Namgpore
on positions &
g lots of series:
position-irst — s s
Fovr fle et ki
Heavy fitering on series id &
accessing lots of positions:
sequence-irst rovrn s Jirial
Sequenceirst
Fewseries
Few positons Mary postiors

(ertire series)

371

Query Types

1 ot o 3 subetotdta e
e Vhluniey o e o

bra 47

QumeyTypaz: Lokt 1ot ot subetothapossirs
e B ot
ey Ty ks e o it Bawctonevakm
SR atresre < . e
a2 v
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Order by position

=

TN

P p———

N

— Clustorod o o postan — Clsiere indox on se4. 4

Simple Conclusion
Heavy fi

255 of postions 35% of potlons 5% of posans

ing or

Heavy filtering on series id &
accessing lots of positions
ence-frst

oo e L
dodbshdo o d0dbshéoro 04T
% of soquences seieciod
“DBMS X
Ecnnab, Zoumpatianos, Palpanas - IEEE B

372

S
s buery Types
e y 1yp
[
BRI

Simple
Selection-Projection-Transformation

TR
P —
B -

Uy Types: Lok s o it basdenavaki
P b mrase S i )

‘gD 2020
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Query Types

simple Complex

Selection-Projection-Transformation AnalylcaliMining Queries

Project ply afunction
Cluserng

ottt o sk .
fr ke e e Frequentpatern E——
i
~ J
oy Typo3: okt e o o Basadonevai “Outlier
bt e A Detastian
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Query Types

Simple Complex

Selection-Projection-Transformation AnalyticaliMining Queries

Clusting

Specialized

3ot of s aubsetofdaisoros .
iy e s Algorithms.
Freagenraten | 97737 Cisssfction
Similaity
Search
utlier
Bottleneck | patection

TimescaleDB

+ Storage: Uses PostgreSQL as the backend.
« It partitions time-series into multiple tables, forming a single
virtual entity called a hypertable.
« Itallows for the compression of data, something that Postgres
does not do by defaut

+ Schema: Tables are normal Postgres tables, where one
has to specify a time column in order to create a hypertable.

+ Queries: Full SQL support, with the addition of custom
time-series functions.
+ Custom time-series operators: first, last, histogram,
interpolation, time bucketing, gap filling, etc.
« Italso supports continuous queries

382

Query Types

simple | Complex |

Selection-Projection-Transformation

y 2V Clustering
P S e

J| /el cssicaton
L Froquent patm

I A
e Outer

f@/v ouier 0

o e et
S

Time-Series Management Systems

afew more details on the
popular systems:

- InfluxDB
- TimescaleDB

380

Challenges and
Open Problems

383
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Query Types

Simple Complex

Queries.

" Speciazed
o | Algorithms
[FeTees
“Sining + " | classification
Smiaity

“Outlier
Detection

378

InfluxDB

« Storage Engine:
« Log Structured Merge Tree: LSM-Tree variant that expects
data to arrive ordered by time and partitions them by distinct
sequence. It then stores each series contiguously.

« Schema:
« Tags and fields. Tags are used to describe meta-data and
fields are used to store quantities that change over time.

* Queries
« It supports group by (only on tags), join (on timestamps and
fields), selections, projections, and aggregations.
« Italso supports continuous queries

381

T

Challenges and Open Problems
« we are still far from having solved the problem
« several challenges remain in terms of
usability, ease of use
scalability, distribution

benchmarking

+ these challenges derive from modern data series applications

384
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Massive Data Series Collections

NASA's Solar Observatory

g 1.5 TB per day Outline Management System

4 Large Synoptic Survey
Telescope (2019)

" « sequence management system e y
~30 TB per night Human Genome project d 8 Y “enable practitioners and non-expert users to easily and

130 TB « benchmarking efficiently manage and analyze massive data series collections”
- interactive analytics
passengerairerafs data centerand - parallelization and distribution

ur A rand ation i
- enersl igh-dinensional vetors
4M points/sec « deep learning

385 386 387

T

Management System Management System Management System

« Big Sequence Management System « Big Sequence Management System

= general purpose data series management system

« Big Sequence Management System

Aesess Methods

i
3
3
i

3 Distributed Processing

388 389 390

Distributed Processing
park / Flink / (HDFS)

Holistic Optimizatio

) Ty

Management System Management System Outline

+ Big Sequence Management System + Big Sequence Management System
- sequence management system

« benchmarking

- interactive analytics

- parallelization and distribution

« general high-dimensional vectors
« deep learning

e |
Eney-20 | Hard-20

Holistic Optimization
Holistic Optimization

A
SR

391 392 393
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Previous Studies

evaluate performance of indexing methods using random queries

« chosen from the data (with/without noise)

el

Echivas, Zoumpatiancs, Plpans - EEEBigdats 2020

394

Previous Workloads

Most previous workloads are skewed to easy queries
100 0

9% of queries

Hardness

Hardness

Hardness

v, Zoumpatiancs, Plpanas - GGE BigDats 2020
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Characterizing Queries

Approximating distances using
Lower Bounding functions on
summarizations.

Lower Bound Distonce from query

Echnat, Zoumptancs, Paanas - EEE gData 2020
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Previous Studies

With or without noise

AW [ AN

Echinas, Zoumoatanos, Papanas - EEE Bigoata 2020
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Previous Workloads

Most previous workloads are skewed to easy queries
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s, Zoumpatsnos, Palpanss - EEE Bigoaa 2020
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Characterizing Queries

‘Approximating distances using
Lower Bounding functions on
summarizations.

Points with lower bounds below MINDIST cannot be pruned

Must be read from disk in order to dismiss false positives

Echiabi, Zoumpatanes, Palpanas - EEE gData 2020
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Problem with
Random Queries

@ §== No control on their characteristics

=) We cannot properly evaluate summarizations and indexes

We need queries that cover the entire range
from easy to hard

e, Zoumpatsno, alpanas - E6 BigDaa 2010
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Benchmark Workloads

If all queries are hard
allindexes look bad

If all queries are easy
all indexes look good

need methods for generating queries of varying hardness

s
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£
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Hardness

Echina, Zoumpatine, Plpanas -1EEE BgData 2020
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& KDD2015

Hardness

We define an e-area

(1+€) * MINDIST
Op, o,

Hardness

# of data —series in e-area

#all data series

Echbabi, Zoumpatoncs, Palbans -IEEE 54Dsta 2020
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Workload Generation

Can we generate queries of controlled hardness?

Hardness

Echbab, Zoumpatanes, Panas - EEE gData 2020

Step 2: Filtering-out e b
“intersecting” queries

We need to independently control the -areas

Echbabi, Zoumpatanes, Paoanas -1EEE D32 2020

409

.
KDDasis

Hardness

ignificance

to have a larger

Queries with larger

data series close
to the answer

higher chance that their lower
boundingdistance will be less
than MINDIST

Echiabi, Zoumptines, Palpans - EEE BgData 2020
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EE
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3 Step Process

Sample
Random queries from a given dataset

Filter
Subset of queries that have “independent” e-areas

“Densify”
g-areas to reach given hardness

et Zoumptancs, Paanss - EEE Bigdats 2020
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Step 2: Filtering-out Ve ot
“intersecting” queries

The e-areas of (Q, @;) and (Q;, ;) cannot be independently controlled
because they intersect

Echiabi, Zoumpatanes, Palpanas - EEE gData 2020
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Workload Generation

Random queries have random hardness

-

?

Echibai, Zoumpatincs, Plpans - EEE BigDats 2020
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Step 1: Sampling

o 5 [

oataser
Select random data series as queries
‘Echihabi, Zoumpatianos, Palpanas - IEEE Bigbata 2020 :
Step 2: Filtering-out Ve ot

“intersecting” queries

Can be formulated as a graph problem
1node per query
1 edge for each pair that doesn't intersect

0 ®

Echina, Zoumpatine, Plpanas -1EEE BgData 2020
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Step 2: Filtering-out
“intersecting” queries

We need to find the maximum clique in the graph
(NP-Complete: we find a large enough clique using a heuristic)

00

Echbabi, Zoumpatoncs, Palbans -IEEE 54Dsta 2020
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Experiments .
Densification Methods - rop

Using all datasets with size 256 (100 queries for each dens. method), we measured the:
* 1-TLB: Summarization Error (0; perfect bound, 1 worst possible bound)
« Minimum Effort for a set of summarizations using 8 - 64 bytes.

Normalized over SAX-64

i e e .
H
N B N ---_---_Ill.g
H
E—— il we . BN
- . e BN

Eenbt, Zoumptancs, Paanas - EE€ SgData 2020
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Outline

+ sequence management system
benchmarking

interactive analytics
parallelization and distribution
general high-dimensional vectors
deep learning

418

Step 3: Densifying
Number of data series to add

Givena set of hardnesses as input

=

~

We decide the number of data series to add for each query by
solving a linear system of equations:

N, +x;
2
N+aax;

+ hardness,

number of data series to add

number of data series already in e-area
: Total number of data series

Echiabi, Zoumptines, Palpans - EEE BgData 2020 o
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Experiments
Densification Methods
For equi-densification
normalized Effort is closer to the normalized Summarization Error

The worse a summarization the bigger effort it does

e s . s

WHED B0 bW
000 HE00 JERD duwd!
OO0 WUUD0 WL dped’

<00y
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£

et Zoumptancs, Paanss - EEE Bigdats 2020 .
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[ —
Interactive Analytics?

- data series analytics is computationally expensive
very high inherent complexity

+ may not always be possible to remove delays
but could try to hide them!

419
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e
KDDasis

Densification Method:
Equi-densification
o New points

& Original points
Distribute points such that:

The worse a summarization 0
the more data it checks &
A °
:
Equal number of points n every “zone” & ®
.
N
o8
.
% e
°
B

Echibai, Zoumpatincs, Plpans - EEE BigDats 2020

414

Summary
Pros:
Theoretical background
Methodology for characterizing
" NN queries for data series indexes

Nearest neighbor query workload generator
Designed to stress-test data series indexes
at varying levels of difficulty

Time complexity
Need new approach to scale to very large datasets

—
Need for
Interactive Analytics

- interaction with users offers new opportunities
progressive answers

+ produce intermediate results

* iteratively converge to final, correct solution

420
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Need for
Interactive Analytics

- interaction with users offers new opportunities
© progressive answers
- produce intermediate results
 iteratively converge to final, correct solution
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= progressive answe
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Need for
Interactive Analytics

« interaction with users offers new opportunities
* progressive answers
+ produce intermediate results
- iteratively converge to final, correct solution
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Need for
Interactive Analytics

« interaction with users offers new opportunities
progressive answers
+ produce intermediate results

- iteratively converge to final, correct solution
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Need for
Interactive Analytics

« interaction with users offers new opportunities
> progressive answers
+ produce interme

iate results
* iteratively converge to final, correet solution
provide bounds on the errors (of the intermediate results) along the way
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Need for
Interactive Analytics

« interaction with users offers new opportunities
progressive answers
+ produce intermediate results
* iteratively converge to final, correct solution
+ provide bounds on the errors (of the intermediate results) along the way
ey bt e

P Rasalt 1180

Py 3 .
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Need for
Interactive Analytics

- interaction with users offers new opportunities
© progressive answers
- produce intermediate results
 iteratively converge to final, correct solution
provide bounds on the errors (of the intermediate results) along the way

430

Outline

« sequence management system

+ benchmarking

« interactive analytics

« parallelization and distribution

« general high-dimensional vectors
« deep learning
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Outline

+ sequence management system

+ benchmarking

« interactive analytics

« parallelization and distribution

« general high-dimensional vectors
« deep learning
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Need for
Interactive Analytics

- interaction with users offers new opportunities
© progressive answers
+ produce intermediate results
- iteratively converge to final, correct solution
+ provide bounds on the errors (of the intermediate results) along the way.

« several exciting research problems in intersection of visualization
and data management
+ frontend: HCI/visualizations for querying/results display
+ backend: efficiently supporting these operations

431

Need for
Parallelization/Distribution

« further scale-up and scale-out possible!
= techniques

inhe;

ly parallelizable

+ aero s machines
_ computenade
e
onds computatian
porsickend
dataseres. ——
sasenss |
callucion

434

|
Data Series vs. high-d Vectors

« two sides of the same(?) coin
+ data series as multidimensional points
+ for a specific ordering of the dimensions

437
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Need for
Parallelization/Distribution
« take advantage of all modern hardware opportunities!

Single Instruction Multiple Data (SIMD)

operations

CPU caches

- design data structures alig :
multi multi-socket architectu
-

- propose massively s for GPUs
new storage solutions: NVRAMs, FPGAs

+ develop algorithms that take these new characteristics/tradeoffs into
account

= compute clusters
+ distribute operation over many machines

432

)

Need for
Parallelization/Distribution

« further scale-up and scale-out possible!
= techniques inher
+ across

ently parallelizable
machin

, a

« need to
= propose methods for concurrent query answering
= combine multi-core and distributed methods
= examine FPGA and NVM technologies

+ more involved solutions required when optimizing for energy
reducing execution time is relatively easy
minimizing total work (energy) is more challenging

435

|
Data Series vs. high-d Vectors

+ two sides of the same(?) coin
data series as multidimensional points
for a sp

ific ordering of the dimensions

+ several techniques for similarity search in high-d vectors
= using LSH (SRS), space quantization (IMI), k-NN graphs (HNSW)

438
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Locality Sensitive Hashing (LSH)
Indexing
I‘:g”c‘glitﬁ)&Sensitive Hashing

« Random hash function g on R* st % 1

for any points p, g: Hat
* Closewhen [|p - gl s v )
)]s "notsosmal” T TeT T
e CEpas]
P, g(p) = 9(q)] is “smal™ TR T

+ Use several hash
tables: e, where
log 1/P,
fog 1/,

Locality Sensitive Hashing
“Nlex Andoni. Locality Semsitive Hashing. Summer Schosl on Hashi

439

T

k-Nearest Neighbor Graphs (KNNGs)
Indexing

Each object is connected to its k most simiar objects

AT Y A
NPRNPRAA

k=12

An example of a KNNG*
“Liv 2, Barabona, M.
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Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data

445

Locality Sensitive Hashing (LSH)
Search

« AKNN query Q arrives
« The hash functions applied to the dataset are applied to

« Points that fall at least once in the same bucket as Q are
further processed in a linear scan

« The list of k 8-e-approximate nearest-neighbor is
returned

440

k-Nearest Neighbor Graphs (kNNGs)
Search

« AKNN query Q arrives

+ Arandom vertex R is selected

« The closest neighbors of R to Q are put in a candidate list

« Each candidate node is visited and its neighbors are put
in the candidate list until greedy termination condition is
met

« The list of k ng-approximate neighbors are returned

443

Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data
= perform the best for queries with
(6-¢-approximate search), in-memory and on-disk

£10000 . b g
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Elope T B
. Emy En
L] 10 + % O g™ 4
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(‘.Q G\ '\d‘ 0\ Q”
Mae AP

(s) Deep25GB(ng) (t) Decp25GB(de)
- D5Trae 5 HNGW
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Inverted Multi-Index (IMI)

441

1 — |
Data Series vs. high-d Vectors

« two sides of the same(?) coin
+ data series as multidimensional points

= for a specific ordering of the dimensions

+ several techniques for similarity search in high-d vectors
= using LSH (SRS), space quantization (IMI), k-NN graphs (HNSW)

« how do these high-d vector techniques compare to data series
techniques?

= currently conducting extensive experimental comparison

444

T

Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data
= perform the best for queries with
(8-¢-approximate search), in-memory and on-disk

et T oo
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Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data
= perform the best for imate queries with
(8-e-approximate search), in-memory and on-disk

HNSW
10000 NOE.]
Elo N
Ll T, i
~ By B0
LT + g 0 5 3 A
-
A SR
MR MAP

(s) Deep25GB(ng) (t) Decp25GB(de)
- DSTrae - HNSW
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Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data
perform the best for i
(8¢

queries with
approximate search), in-memory and on-disk

form the best for long vectors, in-memory and on-disk
orform the best for disk-resident vectors

: £ 100
B
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Outline

+ sequence management system
benchmarking

interactive analytics
parallelization and distribution
general high-dimensional vectors
deep learning
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Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data

1 the best for queries with

approximate search), in-memory and on-disk

perform the best for long vectors, in-memory and on-disk

oo er i

(g) Rand25GB
16384 (ng)
- DSTron - HNSW
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Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data
perform the best for i queries with
(6-&-approximate search), in-memory and on-disk
= perform the best for long vectors, in-memory and on-disk

(m) (n)
Deep250GB(ng)  Deep230GB(de)
£ DSTran 5 HNGW < I ISAX2 -~ SRS —— VAstie :
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Connections to Deep Learning

+ data series indexing for deep embeddings

455
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Data Series vs. high-d Vectors

« data series techniques are the overall winners, even on
general high-d vector data
= perform the best for queries with
approximate search), in-memory and on-disk
perform the best for long vectors, in-memory and on-disk
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Data Series vs. high-d Vectors

- data series are the overall
general high-d vector data

, even on

« several new applications (and challenges) for data series similarity
search techniques!

453

Connections to Deep Learning
+ data series indexing for deep embeddings

sequences

456
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Connections to Deep Learning

+ data series indexing for deep embeddings

sequences

457

Connections to Deep Learning

« data series indexing for deep embeddings
= deep embeddings are high-d vectors
= data series techniques provide effective/scalable similarity search

+ deep learning for summarizing data series
= eg, autoencoders can learn efficient data series summaries

460

Conclusions

+ data series is a very common data type
+ across several different domains and applications

463

Connections to Deep Learning

+ data series indexing for deep embeddings

sequences
text -
images | deep embeddings
video high-d vectors learned usinga DNN
graphs

458

Connections to Deep Learning

« data series indexing for deep embeddings
+ deep embeddings are high-d vectors

+ data series techniques provide effective/scalable similarity search

+ deep learning for summarizing data series
= eg, autoencoders can learn efficient data series summaries

+ deep learning for designing index data structures
¢ learn an index for similarity search

461

T

Conclusions

+ data series is a very common data type
+ across sev

ral different domains and applications
+ complex data series analytics are challenging
have very high complexity

+ efficiency comes from data

management/indexing techniques

464
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Connections to Deep Learning

+ data series indexing for deep embeddings
deep embeddings are high-d vectors
data series techniques provide effective/scalable similarity search

459

Connections to Deep Learning

« data series indexing for deep embeddings
+ deep embeddings are high-d vectors
+ data series techniques provide effective/scalable similarity search

+ deep learning for summarizing data series
+ eg, autoencoders can learn efficient data series summaries

+ deep learning for designing index data structures
learn an index for similarity search

« deep learning for query optimization
search space is vast
learn optimization function

462

T

Conclusions

+ data series is a very common data type
across several different domains and applications
- complex data series analytics are challenging
have very high compl
efficiency comes from data series management/indexing techniques
« need for Sequence Management System
= optimize operations based on data/hardware characteristics
= transparent to user

465
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